首页> 外文会议>SPE annual technical conference and exhibition >High propagation pressures in transverse hydraulic fractures: cause, effect, and remediation
【24h】

High propagation pressures in transverse hydraulic fractures: cause, effect, and remediation

机译:横向水力裂缝中的高传播压力:成因,影响和补救措施

获取原文

摘要

Highly deviated or horizontal wells completed in tight formations are frequently aligned with the minimum principal formation stress and completed with evenly spaced, transverse hydraulic fractures. When a transverse hydraulic fracture is created, unexpectedly high fracture-propagation pressures are often enocuntered. The hydraulic fracture-growth simulators currently available cannot explain these high treating pressures. There-fore, the pressures have been attributed to complex fracture geometries. Another likely cause of unexpectedly high fracture-treating pressures is the fracturing-fluid flow regime under which transverse hydraulic fractures are created. In transverse fractures, fluid flows radially outward from a "point source" (the wellbore). Flow is not linear, as implicitly assumed and hard-coded in many of today's hydraulic-fracturing models or simulators. Where radial flow exists under a constant injection rate, fluid velocities are much greater near the wellbore than out in the fracture. This condition causes high near-wellbore pressure gradients, which result in relatively high fracturing-fluid pressures in and near the wellbore, compared with pressures out in the hydraulic fracture. This pressure-profile effect on fracture-propagation pressure and created fracture dimensions is demonstrated with analytical calculations. The pressure profiles analyzed include a constant pressure throughout the fracture (the equilibrium base case) and a parabolic pressure decay along the length of the fracture (the most severe case considered). The calculations show that, for severe hydraulic-fracture pressure profiles, the fracture-propagation pressure in the wellbore can be more than 12 times greater than the propagation pressure required for constant pressure throughout the fracture. The more severe the pressure drop in the near-wellbore region, the wider and shorter the hydraulic fracture will be. Results from these calculations suggest procedural changes for minimizing the effects of adverse pressure profiles. They also demonstrate that current hydraulic-fracturing models and simulators must be modified to account for the pressure profiles expected under radial-flow conditions.
机译:在致密地层中完井的高度偏斜或水平井经常与最小的主地层应力对齐,并在井眼中均匀分布的横向水力压裂裂缝完井。当产生横向水力压裂时,常常会产生意想不到的高的压裂传播压力。当前可用的水力压裂裂缝生长模拟器不能解释这些高处理压力。因此,压力归因于复杂的断裂几何形状。裂缝处理压力异常高的另一个可能原因是压裂液流态,在该流态下会形成横向水力压裂。在横向裂缝中,流体从“点源”(井眼)径向向外流动。流量不是线性的,就像当今许多水力压裂模型或模拟器中隐含的假设和硬编码一样。在恒定注入速率下存在径向流的情况下,井眼附近的流体速度要比裂缝中的流体速度大得多。与水力压裂中的压力相比,这种情况会导致较高的近井眼压力梯度,从而导致井眼内部和附近的压裂液压力相对较高。分析计算证明了这种压力分布对裂缝传播压力和产生的裂缝尺寸的影响。分析的压力分布图包括整个裂缝的恒定压力(平衡基本情况)和沿着裂缝长度的抛物线压力衰减(考虑到的最严重的情况)。计算表明,对于严重的水力压裂压力曲线,井眼中的压裂传播压力可能比在整个压裂过程中保持恒定压力所需的传播压力大12倍以上。在近井眼区域中的压降越严重,水力压裂将变得越宽和越短。这些计算的结果表明,为了最大程度地减小不利压力曲线的影响,需要进行程序上的更改。他们还表明,必须对当前的水力压裂模型和模拟器进行修改,以解决径向流条件下预期的压力分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号