首页> 外文OA文献 >Prediction of breakdown pressures and fracture propagation surfaces in a rock material subjected to hydraulic fracturing using intact specimens and specimens with a replicated crack
【2h】

Prediction of breakdown pressures and fracture propagation surfaces in a rock material subjected to hydraulic fracturing using intact specimens and specimens with a replicated crack

机译:使用完整的试样和具有复制裂缝的试样预测水力压裂岩石材料的击穿压力和裂缝扩展表面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hydraulic fracturing is a mechanical process widely implemented by many resource industries to change the properties of rock material below the surface of the Earth. This method induces fracturing in a rock mass by injecting highly pressurised fluid into the crust. These resultant fractures can enhance the rock permeability and hence increase the efficiency of hydrocarbon extraction and geothermal energy production. Rock masses have pre-existing discontinuities, which act as weak planes for hydraulic fracturing. As such, the ability to predict the fracture propagation resulting from the interaction between these pre-existing cracks and the pressurised fluid is important to design effective hydraulic fracturing treatments. In addition, the maximum internal fluid pressure that the rock can withstand during this process provides an important parameter to assist these predictions. Therefore, the main research reported in the thesis focuses on the prediction of the hydraulic fracture propagation surfaces from the pre-existing cracks intersecting a pressurised section of a borehole, as well as the prediction of the maximum internal breakdown pressures of intact and discontinuous brittle rock materials. The prediction of the propagation of arbitrarily orientated, pressurised cracks has been addressed by various numerical methods. However, published research on the crack propagation prediction using three dimensional analytical techniques is very limited. One such technique is proposed in this research, which only uses trivial computational time compared with other numerical simulations. This method could assist the design of hydraulic fracturing stimulations by providing a solution quickly for industry. The proposed analytical approach has been validated against a numerical method to ensure accuracy. Studies showed that the predicted propagating crack consistently realigned eventually perpendicular to the minor principal stress direction after the initial tortuous propagation that is dependent on the crack configuration and in-situ stress conditions. In addition, there has been limited experimental research conducted to investigate the behaviour of pre-existing cracks intersecting a pressurised borehole section. In this research, a comprehensive set of experiments were conducted aiming to quantify the influence of the shear stress on the breakdown pressures and the resultant propagation surfaces of a circular crack intersecting a borehole. The study showed that by increasing the induced shear stress, produced by the combination of different external triaxial stresses, the realignment process of the hydraulic fracture propagation surface occurred more rapidly. However, it was found that under the shear stress conditions tested, this component had little influence on the measured breakdown pressures. For the prediction of breakdown pressure, a new approach based on the theory of critical distances is proposed in this research. The proposed method assumes that a pressurised crack is formed at a critical distance into the material prior to the unstable crack propagation. The breakdown pressure is calculated using an analytical approximation of the mode I stress intensity factor for this pressurised crack, which significantly reduces the complexity of the prediction. The prediction using the proposed approach aligns well with the measurement in our experiments as well as with published results from other hydraulic fracturing experiments performed externally.
机译:水力压裂是许多资源行业广泛采用的一种机械过程,用于改变地球表面以下岩石材料的特性。通过将高压流体注入地壳中,该方法在岩体中引起压裂。这些最终的裂缝可以提高岩石的渗透性,从而提高油气开采和地热能生产的效率。岩体具有预先存在的不连续性,它们是水力压裂的弱平面。这样,预测由于这些预先存在的裂缝与加压流体之间的相互作用而导致的裂缝扩展的能力对于设计有效的水力压裂处理很重要。此外,岩石在此过程中可承受的最大内部流体压力为辅助这些预测提供了重要参数。因此,本文报道的主要研究集中在根据与钻孔受压段相交的既有裂缝来预测水力压裂扩展面,以及预测完整和不连续的脆性岩石的最大内部破坏压力的预测。材料。通过各种数值方法已经解决了对任意取向的加压裂纹扩展的预测。但是,关于使用三维分析技术进行的裂纹扩展预测的研究非常有限。在这项研究中提出了一种这样的技术,与其他数值模拟相比,该技术仅使用了琐碎的计算时间。通过为工业快速提供解决方案,该方法可以帮助设计水力压裂增产措施。所提出的分析方法已针对数值方法进行了验证,以确保准确性。研究表明,预测的扩展裂纹在初始曲折扩展后始终垂直于次要主应力方向一致地重新排列,这取决于裂纹的形状和原位应力条件。另外,进行有限的实验研究以研究与加压井眼截面相交的预先存在的裂纹的行为。在这项研究中,进行了一套全面的实验,旨在量化剪切应力对与井眼相交的圆形裂缝的破裂压力和最终传播面的影响。研究表明,通过增加由不同的外部三轴应力组合产生的诱导剪应力,水力压裂扩展面的重新对准过程会更快地发生。然而,发现在测试的剪切应力条件下,该组分对测得的击穿压力几乎没有影响。为了预测击穿压力,本研究提出了一种基于临界距离理论的新方法。所提出的方法假设在不稳定的裂纹扩展之前,进入材料的临界距离处会形成加压裂纹。使用该压力裂纹的模式I应力强度因子的解析近似值来计算击穿压力,从而显着降低了预测的复杂性。使用建议的方法进行的预测与我们的实验中的测量以及外部进行的其他水力压裂实验的公开结果非常吻合。

著录项

  • 作者

    Schwartzkopff Adam Karl;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号