首页> 外文会议>International heat transfer conference;IHTC1998 >Mixed convection flow and heat transfer in a horizontal divergent channel with bottom wall heated
【24h】

Mixed convection flow and heat transfer in a horizontal divergent channel with bottom wall heated

机译:底壁受热的水平扩散通道中的对流和传热混合

获取原文

摘要

Experimental studies of the secondary flow structure and its enhancement on the heat transfer in a horizontal divergent channel have been carried out. The bottom wall is horizontal and is heated uniformly, and while the opposite wall is insulated and inclined with respect tot he horizontal plane so as to create a divergence angle of 3 deg . The aspect ratio (width to height) and the ratio of channel length to height at the entrance of the channel is 6.67 and 15. The Reynolds number ranges from 100 to 2000 and the buoyancy parameter, Gr/Re~2, from 0 to 405. Flow structure inside the channel is visualized by injecting smoke at the inlet flowing along the bottom wall. Secondary flow appearing as mushroom-shaped plumes associated with vortices is also found in the divergent channel. The adverse pressure gradient in the diveragent channel causes a thicker heated layerin the bottom and earlier initiation of secondary flow. The mteraction between neighboring vortices and plumes becomes highly unstable. This causes an earlier and larger enhancement of the heat transfer than the case of the parallel-plate channel. The highly unstable interaction between neighboring plumes in the downstream precludes the formation of steady two-dimensional longitudinal vortex rolls. Temperature fluctuations at different locations are measured to indicate the flow structure and oscillation of the secondary flow. The effects of the buoyancy parameter and the divergence of the channel on the secondary flow structure and the Nusselt number are presented and ddiscussed.
机译:已经进行了二级流动结构及其在水平发散通道中的传热增强的实验研究。底壁是水平的并且被均匀地加热,而相对的壁是绝缘的并且相对于水平面倾斜,从而产生3度的发散角。通道入口的宽高比(宽度与高度)以及通道长度与高度的比率为6.67和15。雷诺数的范围为100到2000,浮力参数Gr / Re〜2的范围为0到405。通过在沿底壁流动的进口处注入烟气,可以看到通道内部的流动结构。在发散通道中也发现了二次流,其表现为与涡旋相关的蘑菇状羽状流。分散剂通道中的不利压力梯度会导致底部的加热层变厚,并导致二次流提前开始。相邻涡流和羽流之间的相互作用变得高度不稳定。与平行板通道的情况相比,这导致了传热的更早和更大的增强。下游相邻羽状流之间的高度不稳定相互作用阻止了稳定的二维纵向涡旋辊的形成。测量不同位置处的温度波动,以指示二次流动的流动结构和振荡。讨论了浮力参数和通道的扩散对二次流结构和Nusselt数的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号