首页> 外文会议>Industrial waste conference >Modeling of copper (II) removal by iron oxide-coated granular activated carbon
【24h】

Modeling of copper (II) removal by iron oxide-coated granular activated carbon

机译:氧化铁包覆的颗粒状活性炭去除铜的模型

获取原文

摘要

Although Fe oxides (includes oxide, hydroxide, and oxyhydroxie Fe minerals) are recognized as effective adsorbents or heavy metals, oxide adsorbent-based treatment processes have been limited by their small particle size. When present as a discrete mineral phase in wastestreams, Fe oxide particles are typically in a colloidal size range that is difficult to remove from aqueous solution. To overcome this limitation, some possible alternatives were described by Edwards and Benjamin (1989), Huang and Vane (1989), and Theis et al. (1992, 1994), who used sand or activated carbon as the supporting medium for iron oxide precipitates, or cemented iron oxide with a proprietary binding material.~(1-4) These adsorbents can solve the particle size problem associated with iron oxide for use in a column process with promising abilities for both cationic and anionic metals removal and recovery. For example, Edwards and Benjamin used iron oxide coated sand as an adsorbent filter media to treat several cationic metals (Cd, Cr, Cu, Ni and Pb) in a column~1. Huang and Vane prepared an Fe~(2+) treated activated caron to remove anionic As~(5+) from aqueous solution.~2 Finally, Theis et al. produced a granular Fe oxide adsorbent for treating cationic Cd and Pb, and anionic Cr metals in a mini-column process.~(3, 4) Because the capacity of these adsorbents for metals depends on the amount of iron oxide on the adsorbent surface, activated carbon would seem to have an advantage as a substrate because of its large surface area. Therefore, we present some results of our work with a composite adsorbent made from Fe oxide and granular activated carbon. A major objective of this work was to select an appropriate equilibrium model to describe the adsorption isotherm, and to show how a first or second order reaction or homogeneous surface diffusion models could be used to model the adsorption process in the batch system.
机译:尽管Fe氧化物(包括氧化物,氢氧化物和羟基氧化Fe矿物)被认为是有效的吸附剂或重金属,但基于氧化物吸附剂的处理工艺因其粒径小而受到限制。当作为离散矿物质相存在于废物流中时,氧化铁颗粒通常处于胶体尺寸范围内,很难从水溶液中去除。为了克服这一局限性,Edwards和Benjamin(1989),Huang和Vane(1989)以及Theis等人描述了一些可能的替代方法。 (1992,1994),他们使用沙子或活性炭作为氧化铁沉淀物的支撑介质,或使用具有专有结合材料的胶结氧化铁。〜(1-4)这些吸附剂可以解决与氧化铁相关的粒径问题可用于具有良好前景的阳离子和阴离子金属去除和回收能力的色谱柱工艺中。例如,爱德华兹(Edwards)和本杰明(Benjamin)使用氧化铁涂层的砂作为吸附剂过滤介质,以处理色谱柱〜1中的几种阳离子金属(Cd,Cr,Cu,Ni和Pb)。 Huang和Vane制备了经Fe〜(2+)处理的活性碳,以从水溶液中去除阴离子As〜(5 +)。〜2最后,Theis等人。 (3,4)由于这些吸附剂对金属的吸附能力取决于吸附剂表面上的氧化铁含量,因此生产了一种用于处理阳离子Cd和Pb以及阴离子Cr金属的粒状Fe氧化物吸附剂。活性炭由于其较大的表面积而似乎具有作为基材的优势。因此,我们介绍了使用由氧化铁和颗粒状活性炭制成的复合吸附剂的工作结果。这项工作的主要目的是选择一个合适的平衡模型来描述吸附等温线,并展示如何使用一阶或二阶反应或均相表面扩散模型来模拟间歇系统中的吸附过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号