首页> 外文会议>International symposium on combustion >The Effect of Changes in the Flame Structure on the Formation and Destruction of Soot and NO_x in Radiating Diffusion Flames
【24h】

The Effect of Changes in the Flame Structure on the Formation and Destruction of Soot and NO_x in Radiating Diffusion Flames

机译:火焰结构变化对扩散扩散火焰中烟尘和NO_x形成与破坏的影响

获取原文

摘要

In this study, soot and NO-x production in four cunterflow diffusion flames with different flame structures is examined both experimentally and theoretically. The distance between the maximum temperature zone and the stagnation plane is progressively changed by changing the inlet fuel and oxidizer concentrations, thus shifting the flame location from the oxidizer side to the fuel side of the stagnation plane. One flame located at the stagnation plane is also examined. Detailed chemical, thermal, and ptical measurements are made to experimentally quantify the flame structure, and supporting numericla calculations with detailed chemistry are also performed by specifying the boundary conditions used in the experiments. Results show that as the radical-rich, hig-temperature reaction zone is forced into the sooting zone, several changes occur in the flame structure and appearance. These are the following: (1) The flames become very bright due to enhanced soot-zone temperature. This can cause significant reduction in NO formation the to increased flame radiation. (2) OH concentraitonis reduced from superequilibrium levels due to soot and soot-precursor oxidation in addition to CO and H_2 oxidation. (3) Soot-precursor oxidaiton significnatly affects soot nucleation on the oxidizer side, while soot nucleation on the fuel side seems to be related to C_2H_2_ concentration. (4) Soot interacts with No formation through the major radical species produced in the primary reaciton zone. It also appears that the Fenimore No initiation mechanism becomes more important for low-temperature flames and when N-2 is added to the fuel side, due to higher N-2 concentration in the CH-rich zone.
机译:在这项研究中,通过实验和理论研究了四种具有不同火焰结构的Cunterflow扩散火焰中烟尘和NO-x的产生。通过改变入口燃料和氧化剂的浓度,逐渐改变最高温度区与停滞平面之间的距离,从而将火焰位置从停滞平面的氧化剂侧移到燃料侧。还检查了位于停滞平面的一处火焰。进行了详细的化学,热和物理测量,以实验方式量化火焰结构,并且还通过指定实验中使用的边界条件,执行了支持详细化学的数值计算。结果表明,随着富含自由基的高温反应区被迫进入烟ot区,火焰结构和外观会发生一些变化。这些是以下内容:(1)由于烟灰区温度升高,火焰变得非常明亮。这会大大减少NO的形成,从而增加火焰的辐射。 (2)由于CO和H_2氧化作用之外的烟灰和烟灰前体的氧化作用,OH超临界状态从超平衡水平降低。 (3)烟灰前体的氧化显着影响氧化剂侧的烟灰成核,而燃料侧的烟灰成核似乎与C_2H_2_的浓度有关。 (4)烟灰通过初级反应区中产生的主要自由基种类与No形成相互作用。似乎Fenimore No引发机制对于低温火焰和在燃料侧添加N-2时也变得更为重要,这是由于富含CH的区域中N-2的浓度较高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号