首页> 外文会议>ASME international mechanical engineering congress and exposition >IMPLICIT INTEGRATION IN MOLECULAR DYNAMICS SIMULATION
【24h】

IMPLICIT INTEGRATION IN MOLECULAR DYNAMICS SIMULATION

机译:分子动力学模拟中的隐含整合

获取原文
获取外文期刊封面目录资料

摘要

Molecular Dynamics (MD) simulation is a versatile methodology that has found many applications in materials science, chemistry and biology. In biology, the models employed range from mixed quantum mechanical and fully atomistic to united atom and continuum mechanical. These systems are evolved in discrete time by solving Newton 's equations of motion at each time step. The numerical methods currently in use limit the step size of a typical all atom simulation to 1 femtosecond. This step size limitation means that many steps need to be taken in order to reach biologically relevant time scales. At each time step, an evaluation of the forces on each atom must be performed resulting in heavy computational loads. This work investigates the use of implicit integration methods in MD. Implicit integration methods have been proven superior to their explicit counterparts in classical mechanical simulation, with which MD has many similarities. Longer time steps reduce the number of force evaluations that must be performed and the corresponding computational load. Herein we present results that compare implicit integration techniques with the current standard for molecular dynamics, the explicit velocity Verlet integration scheme. Total energy conservation is used as a metric for evaluating the dependability of simulations in the microcanonical ensemble. In order to understand the nature of the problem, several long simulations were run and analyzed by performing a Fourier analysis on the position, velocity and acceleration signals. Lastly, several methods for improving the viability of implicit integration methods are consid- ered including replacing the Jacobian used in the Quasi-Newton method with a constant, diagonal mass matrix, evaluating the Jacobian infrequently and finding a better prediction of the system configuration to improve the convergence of the Quasi-Newton method.
机译:分子动力学(MD)仿真是一种多功能的方法,在材料科学,化学和生物学中发现了许多应用。在生物学中,模型采用混合量子机械和完全原子的范围,对联合秋天和连续素机械。通过在每次步骤中解决牛顿运动方程,这些系统在离散时间中演变。目前在使用中的数值方法将典型的所有原子模拟的步长限制为1 femtosecond。该步长限制意味着需要采取许多步骤以达到生物相关的时间尺度。在每个时间步骤中,必须执行对每个原子上的力的评估,从而导致重型计算负载。这项工作调查了在MD中使用隐式集成方法。隐式集成方法已被证明优于其经典机械模拟中的显式对应物,其中MD具有许多相似之处。较长的时间步骤减少必须执行的力评估数量和相应的计算负载。在此,我们呈现了将隐式集成技术与分子动力学的当前标准进行比较,这是显式速度法流集成方案的结果。总节能用作评估微常常集合中的模拟可靠性的指标。为了了解问题的性质,通过对位置,速度和加速信号进行傅立叶分析来运行和分析几个长的模拟。最后,考虑了提高隐式集成方法的可行性的几种方法,包括用常数,对角线质量矩阵替换在准牛顿方法中使用的雅各比亚,不经常评估雅各雅各者并找到更好地预测系统配置以改善系统配置拟牛顿法的收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号