【24h】

IMPLICIT INTEGRATION IN MOLECULAR DYNAMICS SIMULATION

机译:分子动力学模拟中的隐式积分

获取原文

摘要

Molecular Dynamics (MD) simulation is a versatile methodology that has found many applications in materials science, chemistry and biology. In biology, the models employed range from mixed quantum mechanical and fully atomistic to united atom and continuum mechanical. These systems are evolved in discrete time by solving Newton 's equations of motion at each time step. The numerical methods currently in use limit the step size of a typical all atom simulation to 1 femtosecond. This step size limitation means that many steps need to be taken in order to reach biologically relevant time scales. At each time step, an evaluation of the forces on each atom must be performed resulting in heavy computational loads. This work investigates the use of implicit integration methods in MD. Implicit integration methods have been proven superior to their explicit counterparts in classical mechanical simulation, with which MD has many similarities. Longer time steps reduce the number of force evaluations that must be performed and the corresponding computational load.Herein we present results that compare implicit integration techniques with the current standard for molecular dynamics, the explicit velocity Verlet integration scheme. Total energy conservation is used as a metric for evaluating the dependability of simulations in the microcanonical ensemble. In order to understand the nature of the problem, several long simulations were run and analyzed by performing a Fourier analysis on the position, velocity and acceleration signals. Lastly, several methods for improving the viability of implicit integration methods are consid-ered including replacing the Jacobian used in the Quasi-Newton method with a constant, diagonal mass matrix, evaluating the Jacobian infrequently and finding a better prediction of the system configuration to improve the convergence of the Quasi-Newton method.
机译:分子动力学(MD)模拟是一种通用的方法,已在材料科学,化学和生物学中发现了许多应用。在生物学中,采用的模型范围从混合量子力学和完全原子学到联合原子和连续体力学。通过在每个时间步求解牛顿运动方程,这些系统可以在不连续的时间内演化。当前使用的数值方法将典型的全原子模拟的步长限制为1飞秒。这种步长限制意味着需要采取许多步骤才能达到生物学相关的时标。在每个时间步长上,必须对每个原子上的力进行评估,从而导致计算量很大。这项工作研究了MD中隐式集成方法的使用。隐式积分方法已被证明优于经典力学模拟中的显式方法,与MD具有许多相似之处。较长的时间步减少了必须执行的力评估的次数以及相应的计算负荷。 在这里,我们提供的结果将隐式积分技术与当前分子动力学标准(显式速度Verlet积分方案)进行了比较。总能量守恒用作评估微经典合奏中仿真可靠性的度量。为了理解问题的本质,通过对位置,速度和加速度信号进行傅立叶分析,进行了一些长时间的仿真并进行了分析。最后,考虑了几种提高隐式集成方法可行性的方法- 包括用恒定的对角质量矩阵替换拟牛顿法中使用的雅可比行列式,不频繁地评估雅可比行列式,并找到更好的系统配置预测以提高拟牛顿法的收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号