首页> 外文会议>AIAA applied aerodynamics conference >Expanding the Osculating Flowfield Waverider Method Beyond Power Law Body Induced Flowfields
【24h】

Expanding the Osculating Flowfield Waverider Method Beyond Power Law Body Induced Flowfields

机译:扩展超越电力法诱导流菲尔菲尔德超越电力法的流场波浪者方法

获取原文

摘要

The Osculating Flowfield Method of waverider geometry generation has been in existence for over ten years. During that time, many successful applications of the method have been found. The original method employed a series of power law body induced flowfields on each osculating plane. While using this set of flowfields has proven to be quite powerful in defining a wide design space across while waverider vehicles could be optimized, there are limitations to what geometries a collection of such flowfields can produce. Recent work in waverider optimizations directed towards reducing transonic wave drag and sonic boom shaping has highlighted these limitations. The current work is focused on expanding the flowfields available to the Osculating Flowfield Method. A series of Bezier Curves have been employed to represent the vehicle geometry on the osculating flowfields. By manipulating the locations of the control points for the Bezier Curves, a wider variety of such geometries can be produced. For each geometry, the effective shock wave angle is required to scale the local waverider geometry. This shock angle was found for each unique Bezier Curve geometry using either a two-dimensional planar or a two-dimensional axisymmetric Method of Characteristics approach to quickly generate the inviscid shock wave shape. The effective shock wave angle was then determined from these shock shapes. The expanded Osculating Flowfield Method was used with a Particle Swarm Optimization scheme to define optimum waverider configurations for maximized inviscid lift-to-drag ratio, with and without a fixed lift coefficient for both Caret-type waveriders and for generalized three-dimensional waverider configurations. The development of the new approach, along with trend lines and Pareto fronts for the resulting waverider performance, are presented.
机译:WIVERIDER几何生成的监控流场方法已经存在超过十年。在此期间,已发现该方法的许多成功应用程序。原始方法采用一系列电力法诱导的每个凸起平面诱导流场。在使用这套流场时,已被证明在定义广泛的设计空间时,在可以优化Waverider车辆的同时,虽然可以优化Waverider车辆,但是这种流场的集合可以产生的几何图。 WIVERIDER优化的最新工作,用于减少跨音波拖曳和声波悬臂塑造的突出显示了这些限制。目前的工作主要集中在扩展到监控流场方法的流场。已经采用了一系列贝塞尔曲线来代表车辆上的车辆几何形状。通过操纵贝塞尔曲线的控制点的位置,可以制造更广泛种类的这种几何形状。对于每个几何形状,需要有效的冲击波角度缩放局部Waverider几何形状。每个独特的Bezier曲线几何形状发现这种触角,使用二维平面或二维轴对称方法的特性方法,以快速生成无粘性冲击波形状。然后从这些冲击形状确定有效的冲击波角度。扩展的横铣方法与粒子群优化方案一起使用,以限定最大化的VIVERIDER配置,用于最大化的载体升力与缝隙型波浪机的固定提升系数和广义三维WVERIDER配置。提出了新方法,以及带来的Waverider性能的趋势线和帕累托前线的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号