首页> 外文会议>Conference on physiology and function from multidimensional images >Analysis of short single rest/activation epoch fMRI by self-organizing map neural network
【24h】

Analysis of short single rest/activation epoch fMRI by self-organizing map neural network

机译:自组织地图神经网络分析短单休息/激活时期FMRI

获取原文

摘要

Functional magnet resonance imaging (fMRI) has become a standard non invasive brain imaging technique delivering high spatial resolution. Brain activation is determined by magnetic susceptibility of the blood oxygen level (BOLD effect) during an activation task, e.g. motor, auditory and visual tasks. Usually box-car paradigms have 2 - 4 rest/activation epochs with at least an overall of 50 volumes per scan in the time domain. Statistical test based analysis methods need a large amount of repetitively acquired brain volumes to gain statistical power, like Student's t-test. The introduced technique based on a self-organizing neural network (SOM) makes use of the intrinsic features of the condition change between rest and activation epoch and demonstrated to differentiate between the conditions with less time points having only one rest and one activation epoch. The method reduces scan and analysis time and the probability of possible motion artifacts from the relaxation of the patients head. Functional magnet resonance imaging (fMRI) of patients for pre-surgical evaluation and volunteers were acquired with motor (hand clenching and finger tapping), sensory (ice application), auditory (phonological and semantic word recognition task) and visual paradigms (mental rotation). For imaging we used different BOLD contrast sensitive Gradient Echo Planar Imaging (GE-EPI) single-shot pulse sequences (TR 2000 and 4000, 64 $MUL 64 and 128 $MUL 128, 15 - 40 slices) on a Philips Gyroscan NT 1.5 Tesla MR imager. All paradigms were RARARA (R equals rest, A equals activation) with an epoch width of 11 time points each. We used the self-organizing neural network implementation described by T. Kohonen with a 4 $MUL 2 2D neuron map. The presented time course vectors were clustered by similar features in the 2D neuron map. Three neural networks were trained and used for labeling with the time course vectors of one, two and all three on/off epochs. The results were also compared by using a Kolmogorov-Smirnov statistical test of all 66 time points. To remove non- periodical time courses from training an auto-correlation function and bandwidth limiting Fourier filtering in combination with Gauss temporal smoothing was used. None of the trained maps, with one, two and three epochs, were significantly different which indicates that the feature space of only one on/off epoch is sufficient to differentiate between the rest and task condition. We found, that without pre-processing of the data no meaningful results can be achieved because of the huge amount of the non-activated and background voxels represents the majority of the features and is therefore learned by the SOM. Thus it is crucial to remove unnecessary capacity load of the neural network by selection of the training input, using auto-correlation function and/or Fourier spectrum analysis. However by reducing the time points to one rest and one activation epoch either strong auto- correlation or a precise periodical frequency is vanishing. Self-organizing maps can be used to separate rest and activation epochs of with only a 1/3 of the usually acquired time points. Because of the nature of the SOM technique, the pattern or feature separation, only the presence of a state change between the conditions is necessary for differentiation. Also the variance of the individual
机译:功能磁铁共振成像(FMRI)已成为提供高空间分辨率的标准非侵入性脑成像技术。脑激活是通过在激活任务期间血氧水平(大胆效应)的磁化率决定的脑激活,例如,血氧水平(大胆效应)。电机,听觉和视觉任务。通常,箱式乘法范式有2 - 4个休息/激活时期,在时域中每次扫描至少为50卷。基于统计测试的分析方法需要大量重复地获取的大脑体积来获得统计力量,如学生的T检验。基于自组织神经网络(SOM)的引入技术利用了休息和激活时期之间的条件变化的内在特征,并证明了在具有较少时间点的条件之间区分,仅具有一个休息和一个激活时期。该方法减少了患者头部松弛的扫描和分析时间和可能运动伪影的可能性。采用电动机(手握和手指攻丝),感官(冰应用),听觉(语音和语义词识别任务)和视域(精神旋转)获得患者前手术评估和志愿者患者患者患者的功能磁铁共振成像(FMRI) 。对于成像,我们使用了不同的粗体较大敏感梯度回波平面成像(GE-EPI)单次脉冲序列(TR 2000和4000,64 $ MUL 64和128 $ MUL 128,15 - 40切片)在Philips Gyroscan NT 1.5 Tesla想象者先生。所有范式都是Rarara(R等于休息,等于激活),每个时宽为11个时间点。我们利用T. Kohonen描述的自组织神经网络实现,带有4美元的MUL 2 2D Neuron Map。通过2D神经元图中的类似特征聚集了所提出的时间课程载体。培训了三个神经网络并用于标记一个,两个和全部三个开/关时的时间课程。通过使用所有66个时间点的Kolmogorov-Smirnov统计测试,还比较了结果。为了删除非定期时间课程,使用自动相关函数和带宽限制傅里叶滤波与高斯时间平滑相结合。没有培训的地图,其中两个和三个时期都显着不同,这表明只有一个ON / OFF时期的特征空间足以区分其余和任务条件。我们发现,由于没有预处理数据,由于大量的未激活和背景体素代表了大多数特征,因此可以实现任何有意义的结果,因此由SOM学习。因此,使用自动相关函数和/或傅里叶频谱分析,通过选择训练输入来消除神经网络的不必要容量负荷至关重要。然而,通过将时间指向减少一个休息,并且一个激活epoch强的自动相关或精确的周期频率消失。自组织地图可用于分离仅具有通常获取的时间点的1/3的休息和激活时期。由于SOM技术的性质,图案或特征分离,仅存在条件之间的状态变化的存在对于差异化。也是个人的差异

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号