首页> 外文会议>Conference on mathematics and control in smart structures >Thermoelectric control of shape memory alloy microactuators: a thermal model
【24h】

Thermoelectric control of shape memory alloy microactuators: a thermal model

机译:形状记忆合金微致动器的热电控制:热模型

获取原文
获取外文期刊封面目录资料

摘要

Microtechnologies and microsystems engineering use new active materials. These materials are interesting to realize microactuators and microsensors. In this category of materials, Shape Memory Alloys (SMA) are good candidates for microactuation. SMA wires, or thin plates, can be used as active material in microfingers. These microstructures are able to provide very important forces, but have low dynamic response, especially for cooling, in confined environment. The control of the SMA phase transformations, and then the mechanical power generation, is made by the temperature. The Joule effect is an easy and efficiency way to heat the SMA wires, but cooling is not so easy. The dynamic response of the actuator depends on cooling capabilities. The thermal convection and conduction are the traditional ways to cool the SMA, but have limitations for microsystems. We are looking for a reversible way of heating and cooling SMA microactuators, based on the thermoelectric effects. Using Peltier effect, a positive or a negative electrical courant is able to pump or produce heat, in the SMA actuator. A physical model based on thermal exchanges between a Nickel/Titanium (NiTi) SMA, and Bismuth/Telluride (Te$-3$/Bi$-2$/) thermoelectric material has been developed. For simulation, we use a numerical resolution of our model, with finite elements, which takes into account the Peltier effect, the Joule effect, the convection, the conduction and the phase transformation of the SMA. We have also developed the corresponding experimental system, with two thermoelectric junctions, where the SMA actuator is one of the element of each junction. In this paper, the physical model and its numerical resolution are given, the experimental system used to validate the model is described, and experimental results are shown.
机译:Microotechnologies和Microsystems工程使用新的活性材料。这些材料有趣的是实现微致动器和微传感器。在这类材料中,形状记忆合金(SMA)是微动的良好候选者。 SMA电线或薄板,可用作微型机中的活性材料。这些微结构能够提供非常重要的力,但具有低动态响应,特别是在狭窄的环境中冷却。通过温度进行SMA相变,然后机械发电的控制。焦耳效果是加热SMA线的简单效率,但冷却并不是那么容易。执行器的动态响应取决于冷却能力。热对流和传导是冷却SMA的传统方式,但对微系统有局限性。我们正在寻找一种可逆的加热和冷却SMA微致动器的方式,基于热电效应。在SMA执行器中使用Peltier效果,阳性或负电源龙头能够泵送或产生热量。已经开发了基于镍/钛(NITI)SMA和铋/碲化物(TE $ -3 $ / BI $ -2 $ /)热电材料之间的热交换器的物理模型。对于仿真,我们使用模型的数值分辨率,具有有限元,考虑到珀耳蛋白效果,焦耳效果,对流,传导和SMA的相变。我们还开发了相应的实验系统,具有两个热电连接器,其中SMA致动器是每个连接点的元素之一。在本文中,给出了物理模型及其数值分辨率,描述了用于验证模型的实验系统,并显示了实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号