首页> 外文会议> >Plasma Optimization Usinga Real-Time, Insitu Sensor BASED on Optical and RF Signatures: Advanced ETCH Applications
【24h】

Plasma Optimization Usinga Real-Time, Insitu Sensor BASED on Optical and RF Signatures: Advanced ETCH Applications

机译:使用基于光和射频签名的实时原位传感器进行等离子体优化:高级ETCH应用

获取原文

摘要

Summary form only given. A novel in-situ sensor is utilized to characterize the plasma used in conductor etch applications. This real-time sensor employs both full optical spectrum as well as RF sensor input to acquire detailed plasma information. The use of optical emission and reflectance spectrum capture from 200 nm to 800 nm at 10 Hz along with the basic RF harmonics (at the same 10 Hz rate) gives a detailed fingerprint of the plasma which has been found to reveal subtle aspects of plasma, process and chamber conditions. Since the plasma is a complex function of many components, the use of this data-rich approach has been proven to allow detection of features which otherwise would not be apparent. The EyeD process state monitor has been developed as a combination of sensitive detection and advanced principle component analysis in order to extract the maximum amount of relevant information (signal) from the noise. This signal to noise improvement can be greater than many orders of magnitude depending on the application. In particular, the sensor configuration is utilized for conductor etch to study the nature of the plasma under a wide range of tuning conditions. The goal of this activity is to determine a correlation between plasma state and both the input parameters (power, gas flow), as well as boundary conditions (chamber seasoning, process history), and ultimately the on-wafer performance of the plasma for conductor etch. With the use of principle component analysis, it is possible to evaluate a extremely complex plasma condition and reduce the data to a set of 2-3 relevant components. With these components, the plasma condition can be quantitatively monitored and evaluated. This ability allows for multiple capabilities which will be highlighted in the paper. Data will be given showing how the plasma conditions can be used for: process optimization (stability, ignition window, higher etch rate, etc.); for hardware optimization (chamber baselining, chamber to- chamber matching, excursion detection, fault capture and analysis); and sequence optimization (seasoning, switching between etch conditions and materials). This in-situ, real-time capability enables plasma diagnostics and APC. Examples include various advanced conductor etch processes
机译:仅提供摘要表格。一种新颖的原位传感器用于表征导体蚀刻应用中使用的等离子体。这种实时传感器同时利用全光谱和RF传感器输入来获取详细的等离子体信息。在10 Hz下从200 nm至800 nm的光发射和反射光谱捕获以及基本RF谐波(以相同的10 Hz速率)的使用,给出了等离子体的详细指纹图谱,发现该指纹图谱可揭示等离子体的细微特征,工艺和腔室条件。由于等离子体是许多组件的复杂功能,因此已证明使用这种数据丰富的方法可以检测原本就不明显的特征。 EyeD过程状态监视器已开发为灵敏检测和高级主成分分析的组合,以从噪声中提取最大数量的相关信息(信号)。取决于应用,这种信噪比改善可能大于许多数量级。特别地,传感器配置用于导体蚀刻,以研究在宽范围的调谐条件下等离子体的性质。该活动的目标是确定等离子体状态与输入参数(功率,气体流量)以及边界条件(腔室调味,过程历史)之间的相关性,并最终确定等离子体在导体上的晶片上性能蚀刻。通过使用主成分分析,可以评估极其复杂的血浆状况,并将数据减少为2-3个相关成分的集合。使用这些组件,可以对血浆状况进行定量监测和评估。此功能允许多种功能,这些功能将在本文中重点介绍。将给出显示等离子条件如何用于以下方面的数据:工艺优化(稳定性,点火窗口,更高的蚀刻速率等);用于硬件优化(腔室基线,腔室到腔室匹配,偏移检测,故障捕获和分析);和顺序优化(调味,蚀刻条件和材料之间的切换)。这种原位实时功能可实现等离子体诊断和APC。示例包括各种先进的导体蚀刻工艺

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号