首页> 外文会议> >Wavelets in the propagation of waves in materials with microstructure
【24h】

Wavelets in the propagation of waves in materials with microstructure

机译:具有微观结构的材料中的波传播中的小波

获取原文
获取外文期刊封面目录资料

摘要

The analysis of evolution differential equations (parabolic-hyperbolic) might be considered within the framework of the (harmonic) wavelet theory. In fact, the multiresolution analysis of wavelets seems to be a suitable scheme for the investigation of phenomena, which appears at different scales of approximation. Very often, the approximate solution is expressed in terms of functions which are significant only at a given resolution, and, some time, also the exact solution (like e.g. the D'Alembert solution of the wave equation) shows two characteristic features of wavelets: the dilation (multiscale) and the translation properties. However, from physical point of view, the wavelets still have little interpretations, especially concerning the small details expressing small deviations nearby the steady solution, since there are only a few examples of physical propagation of wavelets. In particular, the wavelet solutions of the dispersive (Klein-Gordon) wave equation show that the multiresolution approach is a kind of approximation that at each (scale) step increases the "resolution" of the solution. Thus it seems interesting to investigate this multilevel process that, at each scale (level), adds some more details to the solution. As application, the wavelet solution of the Klein Gordon equations for materials with microstructure, is defined as follows: the dispersive wave solution of the propagation equation is interpreted as a superposition of "small" waves on a basic wave. So that the wave propagation will be investigated at each given resolution, by showing that the "minor" details of the solution, neglectable at the initial time, have a significant influence on the solution on a long (time) range.
机译:演化微分方程(抛物线-双曲线)的分析可以在(谐波)小波理论的框架内进行。实际上,小波的多分辨率分析似乎是研究现象的一种合适方案,这种现象以不同的逼近度出现。通常,近似解是用仅在给定分辨率下才有意义的函数来表示的,有时,精确解(例如波动方程的D'Alembert解)也表现出小波的两个特征:扩张(多尺度)和翻译属性。但是,从物理的角度来看,小波仍然没有什么解释,特别是关于在稳定解附近表示小偏差的小细节,因为只有几个小波物理传播的例子。特别是,色散(Klein-Gordon)波动方程的小波解表明,多分辨率方法是一种近似,即在每个(比例)步都增加了解的“分辨率”。因此,研究这种多层次的过程似乎很有趣,该过程在每个规模(层次)上都为解决方案添加了更多细节。作为应用,具有微观结构的材料的Klein Gordon方程的小波解定义如下:传播方程的色散解被解释为基波上“小”波的叠加。这样一来,通过显示解决方案的“次要”细节(在初始时间可以忽略),就可以在每个给定的分辨率下研究波的传播,而这些细节在很长的(时间)范围内都会对解决方案产生重大影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号