首页> 外文会议> >Spatial analysis of the electron transit time in a silicon/germanium heterojunction bipolar transistor by drift-diffusion, hydrodynamic, and full-band Monte Carlo device simulation
【24h】

Spatial analysis of the electron transit time in a silicon/germanium heterojunction bipolar transistor by drift-diffusion, hydrodynamic, and full-band Monte Carlo device simulation

机译:通过漂移扩散,流体动力学和全频带蒙特卡洛器件仿真对硅/锗异质结双极晶体管中的电子渡越时间进行空间分析

获取原文

摘要

Transit times and cut-off frequency of a silicon/germanium heterojunction bipolar transistor (SiGe HBT) are investigated by consistent drift-diffusion (DD), hydrodynamic (HD), and full-band Monte Carlo (FB-MC) simulations. Good agreement of all three transport models is found for the collector transit time. The quasiballistic transport in the base is well described by the HD model and yields the same transit time as the FB-MC model, whereas the DD model yields a much larger transit time, because it does not include any velocity overshoot effects. Surprisingly, in the emitter region, the FB-MC model yields the largest transit time, leading to a peak cut-off frequency for the special device structure under investigation which is even smaller than the DD peak value. The strong anisotropy of the strained band structure in the base, which is not captured in full detail by the DD and HD models, is identified as a possible reason for this unexpected behavior.
机译:通过一致的漂移扩散(DD),流体动力学(HD)和全频带蒙特卡洛(FB-MC)仿真研究了硅/锗异质结双极晶体管(SiGe HBT)的传输时间和截止频率。对于收集器的运输时间,发现所有三种运输模型都具有良好的一致性。 HD模型很好地描述了基地中的准弹道运移,并产生了与FB-MC模型相同的渡越时间,而DD模型产生了更大的渡越时间,因为它不包括任何速度超调效应。出乎意料的是,在发射极区域,FB-MC模型产生最大的渡越时间,从而导致所研究的特殊器件结构的峰值截止频率甚至小于DD峰值。底部应变带结构的强各向异性(未通过DD和HD模型详细捕获)被认为是造成这种意外行为的可能原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号