首页> 外文会议> >Self-consistent modeling of low pressure microwave discharges including non-collisional heating processes
【24h】

Self-consistent modeling of low pressure microwave discharges including non-collisional heating processes

机译:低压微波放电的自洽建模,包括非碰撞加热过程

获取原文

摘要

Summary form only given. Low pressure microwave plasma sources used for materials processing generally operate as overdense plasmas with the plasma density greater than the critical density. These sources can be operated with a static magnetic field that provides for ECR heating or without a static magnetic field via ohmic, resonance and other non-ohmic and stochastic heating mechanisms. Even when ECR strength magnetic fields are present these other heating mechanisms that occur in unmagnetized plasmas can be important and may even dominate. This paper examines via a two-dimensional, self-consistent microwave field and plasma model the heating of low pressure, overdense, magnetized and unmagnetized plasma discharges. Low-pressure (collision frequency /spl Lt/ excitation frequency) microwave plasma simulations that model the spatial variation of the microwave heating fields and plasma discharge are difficult to use in the local regions where the plasma frequency is near the excitation frequency. In these regions resonance effects occur and the microwave electric field can become large. Because of the localized nature of the resonance (high microwave field strength) region, stochastic (non-collisional) heating can occur as the electrons are accelerated/heated in this region and/or transverse through this resonance region via their initial momentum. This paper explores the self-consistent modeling of microwave discharges including resonance effects and stochastic heating effects. Further the models are constructed to closely match an experimental system that has been extensively characterized. This experimental system is a 2.45 GHz resonant cavity plasma source that has been studied while running argon discharges at pressures of 4-60 mTorr using Langmuir probes to determine the plasma density and electron temperature and using microwave field probes and optical diagnostic techniques to measure the microwave field strength.
机译:仅提供摘要表格。用于材料处理的低压微波等离子体源通常以等离子体密度大于临界密度的过密等离子体运行。这些源可以在提供ECR加热的静磁场下运行,也可以通过欧姆,共振以及其他非欧姆和随机加热机制在没有静磁场的情况下运行。即使存在ECR强度磁场,未磁化等离子体中发生的这些其他其他加热机制也可能很重要,甚至可能起主导作用。本文通过二维,自洽微波场和等离子体模型检查低压,过密,磁化和非磁化等离子体放电的加热。在等离子体频率接近激发频率的局部区域中,难以使用低压(碰撞频率/ spl Lt /激发频率)微波等离子体模拟来模拟微波加热场和等离子体放电的空间变化。在这些区域中会发生共振效应,并且微波电场会变大。由于共振(高微波场强度)区域的局部性质,当电子在该区域中加速/加热和/或通过其初始动量横穿该共振区域时,会发生随机(非碰撞)加热。本文探讨了微波放电的自洽模型,包括共振效应和随机加热效应。进一步地,模型被构建为与已经被广泛表征的实验系统紧密匹配。该实验系统是一个2.45 GHz谐振腔等离子体源,已使用Langmuir探针确定等离子体密度和电子温度,并使用微波场探针和光学诊断技术测量微波,同时在4-60 mTorr的压力下运行氩气放电时进行了研究。场强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号