首页> 外文会议> >Maneuvering and Vibration Reduction of Three-axis Stabilized Flexible Spacecrafts Using Variable Structure Strategies with Improved Adaptation Law
【24h】

Maneuvering and Vibration Reduction of Three-axis Stabilized Flexible Spacecrafts Using Variable Structure Strategies with Improved Adaptation Law

机译:具有改进适应律的变结构策略三轴稳定柔性航天器的操纵与减振

获取原文

摘要

This paper proposes a robust control algorithm for stabilization of a three-axis stabilized flexible spacecraft in the presence of model uncertainty, external disturbances and control input nonlinearities. This control algorithm is based on variable structure output feedback control design technique, and explicitly accounts for the control input nonlinearities in the stability analysis. Asymptotically and exponentially stable design methods are investigated for constructing the controller to stabilized uncertain system with input nonlinearities. The proposed two kind of the controller ensures the global reaching condition of the sliding mode of the spacecraft dynamics system. Moreover, in the sliding mode, the investigated dynamics system still bears the insensitivity to the uncertainties and disturbances as the system with linear input. An additional attractive feature of the control method is that the structure of the controller is independent of the elastic mode dynamics of the spacecraft, since in practice the measurement of flexible modes is not easy or feasible. It is also shown that an adaptive version of the proposed controller is achieved through releasing the limitation of knowing the bounds of the uncertainties and perturbations in advance. The adaptive variable structure output feedback control law results in substantially simpler stability analysis and improves overall response. In addition, a modified adaptation control law is given for the upper bound on the uncertainty to improve the adaptive performances such that a new controller is designed which can guarantee the boundedness of the closed-loop system and can be described as a combination of sliding mode control law and S-modification adaptive law. Numerical simulations show that the precise attitude control and vibration suppression can be accomplished using the derived controller for both cases with and without adaptive control.
机译:本文提出了一种鲁棒的控制算法,用于在存在模型不确定性,外部干扰和控制输入非线性的情况下稳定三轴稳定的挠性航天器。该控制算法基于变结构输出反馈控制设计技术,并在稳定性分析中明确考虑了控制输入非线性。研究了渐近和指数稳定设计方法,以构造具有输入非线性的稳定不确定系统的控制器。所提出的两种控制器确保了航天器动力学系统滑模的全局到达条件。此外,在滑动模式下,所研究的动力学系统仍然具有线性输入系统对不确定性和扰动的不敏感性。控制方法的另一个吸引人的特点是,控制器的结构与航天器的弹性模态动力学无关,因为在实践中,柔性模态的测量并不容易或不可行。还表明,通过释放事先知道不确定性和扰动界限的限制,可以实现所提出控制器的自适应版本。自适应可变结构输出反馈控制定律可大大简化稳定性分析并改善总体响应。另外,针对不确定性的上限给出了改进的自适应控制律,以提高自适应性能,从而设计了一种新型控制器,该控制器可以保证闭环系统的有界性,并且可以描述为滑动模式的组合。控制定律和S-修改自适应定律。数值模拟表明,在有和没有自适应控制的情况下,都可以使用派生的控制器来实现精确的姿态控制和振动抑制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号