首页> 外文会议> >Generation of Nanostructures of Mica Supported Lysozyme and Lysozyme-Nanogold Conjugates by Diving Tip Nanowriting
【24h】

Generation of Nanostructures of Mica Supported Lysozyme and Lysozyme-Nanogold Conjugates by Diving Tip Nanowriting

机译:云母支持的溶菌酶和溶菌酶-纳米金结合物的纳米结构通过潜水尖端纳米写作的生成。

获取原文

摘要

Nanostructures of lysozyme molecules and lysozyme-nanogold conjugates were generated by atomic force microscopy in contact-, tapping- and force-distance- mode on mica in aqueous solution. In contact mode at high ionic strength, adjusted lysozyme concentration and lower loading force a monolayer of defined structure and orientation of lysozyme can be formed by the scan process of the tip. A lateral resolution of the monolayer of about 80 nm could be achieved. At larger loading forces besides a lysozyme monolayer also 3D- aggregates could be generated in parallel. In force-distance mode the volume of 3D-aggregates was studied as function of lysozyme concentration, loading force and number or frequency of up- and down-movement of the tip. Also in tapping mode 3D-aggregates were generated at the selected incubation conditions. Application of the linescan mode for solutions of nanogold or lysozyme-nanogold conjugates allowed the formation of monlayers of linear shape with lateral resolution of about 35 nm on mica. Nanogold line-structures could be connected to macroscopic gold contacts. It is postulated that adjustment of electrostatic interaction between lysozyme and substrate and the applied loading force is critical for monolayer formation. Different to the underlying mechanism of the well-established dip-pen nanolithography (DPN) (Piner et al., 1999) for the presented method of diving tip nanowriting (DTN) adsorption of the molecules from the aqueous bulk phase to the tip and thereafter the flow to the mica surface is discussed. DTN could be used to either contact proteins electrically or to form preaggregates for protein crystallization (Wiechmann et al.
机译:溶菌酶分子和溶菌酶-纳米金偶联物的纳米结构是通过原子力显微镜在水溶液中的云母上以接触,敲击和力-距离模式产生的。在高离子强度,调节的溶菌酶浓度和较低的加载力的接触模式下,可以通过尖端的扫描过程形成具有确定的溶菌酶结构和方向的单分子层。单层的横向分辨率可以达到约80 nm。在较大的加载力下,除了溶菌酶单层外,还可以并行生成3D聚集体。在力-距离模式下,研究了3D聚集体的体积与溶菌酶浓度,加载力以及尖端上下运动的次数或频率的函数。同样在敲击模式下,在选定的孵育条件下会生成3D聚集体。将线扫描模式应用于纳米金或溶菌酶-纳米金结合物的溶液,可在云母上形成横向分辨率约为35 nm的线性单层膜。纳米金线结构可以连接到宏观金触点。假定溶菌酶和底物之间的静电相互作用以及所施加的加载力的调节对于单层形成至关重要。不同于成熟的浸笔式纳米光刻(DPN)的基本机理(Piner et al。,1999),该方法是将分子从水体相中吸附到尖端,然后再进行尖端纳米书写(DTN)吸附的方法。讨论了向云母表面的流动。 DTN可用于电接触蛋白质或形成用于蛋白质结晶的预聚集体(Wiechmann et al。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号