首页> 外文会议> >A possible mechanism for acoustic triggering of decompression sickness symptoms in deep-diving marine mammals
【24h】

A possible mechanism for acoustic triggering of decompression sickness symptoms in deep-diving marine mammals

机译:深度潜水的海洋哺乳动物通过声触发减压病症状的可能机制

获取原文

摘要

An interest in plausible mechanisms for significant acoustic impact on some species of marine mammals at receive levels significantly below that currently anticipated to cause direct physical trauma has arisen in response to questions of how the operation of sonars may have contributed to mass beaching events of beaked whales. Resonance in cavities and other specific structures was at one time proposed as a mechanism, but after some scrutiny this now appears unlikely. Rectified diffusion was posed as another candidate, but has been demonstrated to be significant only at relatively high pressure levels, exceeding receive levels anticipated in observed beaching circumstances. We examine an alternative proposition; that pre-existing micro-bubbles that are normally stabilized and which do not normally permit gas exchange across their walls can be acoustically activated so that continued growth is supported through static diffusion from super-saturated tissues in the absence of an acoustic field. The proposed mechanism would explain why micro bubbles (believed to be normally present in mammalian tissues) do not grow and cause decompression sickness (DCS) in healthy deep divers with super-saturated tissues, why these micro bubbles do not collapse under the Laplace pressure exerted by surface tension in unsaturated tissues, and why long-duration, deep diving cetaceans such as beaked whales appear to be particularly vulnerable to anthropogenic acoustic exposures. Numerical results for bubble growth modelled according to the treatments of Crum and Mao under tissue super-saturations of 200-300% (an appropriate range for deep-diving marine mammals on surfacing) show that if micro-bubble gas exchange could be activated acoustically, even by only a very brief exposure, this would result in subsequent bubble growth by static gas diffusion so that within 10 minutes their size would be sufficient to cause symptoms of decompression sickness (DCS).
机译:人们对声纳运行如何可能对喙鲸的大规模滩涂事件产生影响的问题引起了人们的兴趣,这些机制似乎对某些海洋哺乳动物的声音产生显着影响,其接收水平大大低于目前预期直接造成物理性伤害的水平。 。曾经有人提议将空腔和其他特定结构的共振作为一种机制,但是经过仔细研究,现在看来这不太可能。矫正扩散被认为是另一种选择,但已证明仅在相对较高的压力水平下才显着,超过观察到的滩涂情况下预期的接收水平。我们研究一个替代性命题;通常已经稳定且通常不允许气体通过其壁进行交换的预先存在的微气泡可以通过声学方式激活,从而可以通过在没有声场的情况下从超饱和组织进行静态扩散来支持持续的生长。拟议的机制将解释为什么微气泡(据信通常存在于哺乳动物组织中)在具有超饱和组织的健康深层潜水员中不会生长并引起减压病(DCS),为什么这些微气泡在施加拉普拉斯压力的情况下不会崩溃由于不饱和组织中的表面张力,以及为什么长时间的深海鲸类动物(如喙鲸)似乎特别容易受到人为的声波照射。根据Crum和Mao的处理在200-300%的组织过饱和度(适合深海潜水的海洋哺乳动物在铺面的适当范围内)下模拟的气泡生长的数值结果表明,如果可以通过声学方式激活微气泡气体交换,即使仅进行非常短暂的暴露,这也将导致随后的气泡由于静态气体扩散而增长,因此气泡的大小在10分钟内足以引起减压病(DCS)的症状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号