首页> 外文会议> >A review of the US joining technologies for plasma facing components in the ITER fusion reactor
【24h】

A review of the US joining technologies for plasma facing components in the ITER fusion reactor

机译:美国对ITER聚变反应堆中面向等离子体部件的连接技术的评论

获取原文

摘要

This paper is an overview of joining technologies developed for the fabrication of duplex armor/heat sink structures for use as actively cooled plasma facing components (PFCs). Tore Supra has been facing the challenge of implementing such technology with carbon armor brazed to copper alloy heat sinks for several years. Also, extensive preparations were made for the deployment of actively cooled limiters with beryllium armor joined to copper alloy heat sinks in the Joint European Torus (JET). With the development of plasma facing components for the International Thermonuclear Experimental Reactor (ITER), there has been a trend toward fabrication of more sophisticated structures to deal with the challenges of relatively long component lifetimes under high thermal loads. This paper summarizes earlier work on Tore Supra and JET as well as current efforts in the US in developing adequate joining technologies for ITER plasma facing components. For ITER, many unique and innovative joining techniques are being considered in the quest to join two candidate armor materials (beryllium and tungsten) to a copper base alloy heat sink (CuNiBe, DS copper, or CuCrZr). These techniques include brazing and diffusion bonding, incorporating compliant layers, diffusion barrier coatings and diffusion enhancing coatings at the bond interfaces. At this writing, two beryllium-copper divertor mock-ups have survived 1000 thermal cycles at 10 MW/m/sup 2/ without damage during testing at the electron beam test system (EBTS) facility at Sandia National Laboratories in New Mexico. A plasma-sprayed (Be on Cu) ITER first wall mock-up has survived 3000 cycles at 1 MW/m/sup 2/ without damage.
机译:本文概述了连接技术的发展,这些连接技术是为制造用作主动冷却的等离子体面板部件(PFC)的双层铠装/散热器结构而开发的。几年来,Tore Supra一直面临将碳铠装铜焊到铜合金散热片上来实施这种技术的挑战。此外,还进行了广泛的准备工作,以部署带有铍装甲的主动冷却限流器,并将其与欧洲联合环形(JET)的铜合金散热器相连。随着用于国际热核实验反应堆(ITER)的面向等离子体的组件的发展,已经出现了制造更复杂结构的趋势,以应对在高热负荷下相对较长的组件寿命的挑战。本文总结了有关Tore Supra和JET的早期工作,以及美国目前在为ITER等离子表面组件开发适当的连接技术方面所做的努力。对于ITER,为了将两种候选装甲材料(铍和钨)连接到铜基合金散热器(CuNiBe,DS铜或CuCrZr),正在考虑采用许多独特和创新的连接技术。这些技术包括钎焊和扩散粘结,在粘结界面处结合顺应层,扩散阻挡涂层和扩散增强涂层。在撰写本文时,在新墨西哥州桑迪亚国家实验室的电子束测试系统(EBTS)设施进行测试期间,两个铍-铜偏滤器模型在10 MW / m / sup 2 /的条件下经受了1000次热循环,没有受到破坏。等离子喷涂(在铜上)ITER第一壁模型在1 MW / m / sup 2 /的条件下可以经受3000次循环而没有损坏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号