首页> 外文学位 >Modeling and mechanisms of macroscopic erosion of melt layers of plasma facing components in fusion reactors.
【24h】

Modeling and mechanisms of macroscopic erosion of melt layers of plasma facing components in fusion reactors.

机译:聚变反应堆中面向等离子体的部件的熔体层宏观腐蚀的建模和机理。

获取原文
获取原文并翻译 | 示例

摘要

Metallic materials such as tungsten and beryllium are candidates for the design of the plasma facing components (PFC). During plasma instabilities with short durations such as disruptions, edge-localized modes (ELM), and runaway electrons, high-power fluxes are directed to and deposited on the PFC. The thermal response of these PFC reaches melting and vaporization conditions. Considering the phenomenon of vapor shielding, both experimental and simulation results show that the material loss by vaporization is one to two orders of magnitude less than the resulting melt layer thickness [1]. Therefore, losses due to melt layer erosion and splashing can be critical erosion mechanisms and serious lifetime issues. The main mechanisms of melt layer erosion are liquid splashing due to body forces (gravity, magnetic force), momentum exchange and pressure gradient [2], which lead to the development of hydrodynamics instabilities such as Rayleigh-Taylor or Kelvin-Helmholtz instabilities [3], and boiling induced bubble formation, growth, and droplets emission [4]. The present work is to investigate in more details the physical models of these macroscopic erosion mechanisms. The numerical models are implemented based on a two-moving boundary thermal response model including the vapor-shielding effect [5]. A comprehensive understanding of these mechanisms is a key element in the design of the metallic PFC and to identify the proper operation of future fusion reactors such as ITER device.
机译:金属材料(如钨和铍)是面向等离子组件(PFC)设计的候选材料。在短时间的等离子体不稳定性期间,例如破坏,边缘定位模式(ELM)和电子失控,高功率通量被引导并沉积在PFC上。这些PFC的热响应达到熔化和汽化条件。考虑到蒸汽屏蔽现象,实验和仿真结果均表明,通过汽化造成的材料损失比所产生的熔体层厚度小一到两个数量级[1]。因此,由于熔体层腐蚀和飞溅引起的损失可能是关键的腐蚀机理和严重的寿命问题。熔体层侵蚀的主要机制是由于体力(重力,磁力),动量交换和压力梯度[2]引起的液体飞溅,这导致了诸如Rayleigh-Taylor或Kelvin-Helmholtz不稳定性之类的流体力学不稳定性的发展[3]。 ],并且沸腾引起气泡的形成,生长和液滴排放[4]。目前的工作是更详细地研究这些宏观侵蚀机制的物理模型。数值模型是基于两个运动的边界热响应模型实现的,其中包括蒸汽屏蔽效应[5]。对这些机制的全面理解是金属PFC设计中的关键要素,也是确定未来聚变反应堆(如ITER装置)正常运行的关键要素。

著录项

  • 作者

    Shi, Yimeng.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Nuclear.
  • 学位 M.S.En.E.
  • 年度 2010
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:10

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号