【24h】

Scale transitions in bone elasticity from the nanometer level up to cortical and trabecular bone

机译:骨弹性的尺度转换从纳米级到皮质和小梁骨

获取原文
获取原文并翻译 | 示例

摘要

Our goal, the prediction of the anisotropic elastic properties of bone on the basis of an appropriate description of its hierarchical organization, has been a research challenge for decades. However (cited from, p. 177), "so far", in 2001, "no one has developed a theory of bone structure that can satisfactorily explain its mechanical behavior on the basis of its internal structure and composition." This drawback seems to result from an insufficient nanostructural representation of the extracellular bone matrix or ultrastructure, defined at a characteristic length of 5 to 10 microns. We derived the morphology governing the ultrastructural elasticity from ultrasonic and chemical experiments, through energy considerations. Here we show how to integrate this morphology and the microporosity into a unified continuum micromechanics model, based on intrinsic stiffness values for bone mineral, collagen, non-mineral matter, and marrow, which are valid for all types of mineralized tissues in vertebrates. The volume fractions of the phases (mineral, collagen, microporosity), representing the composition of different tissues, serve as model input. Predicted elasticity tensors (output of the model) agree very well with experimental data.
机译:我们的目标是在适当描述其层次结构的基础上预测骨骼的各向异性弹性,这已成为数十年来的研究挑战。但是(从第177页引自)“到目前为止”,在2001年,“没有人开发出一种可以根据其内部结构和组成令人满意地解释其力学行为的骨结构理论”。该缺陷似乎是由于胞外骨基质或超微结构的纳米结构表示不足而导致的,特征在于5-10微米的特征长度。我们通过能量考虑,从超声和化学实验中得出了控制超微结构弹性的形态。在这里,我们展示了如何基于骨骼矿物质,胶原蛋白,非矿物质和骨髓的固有刚度值,将这种形态和微孔整合到统一的连续微力学模型中,这些固有刚度值对脊椎动物中所有类型的矿化组织均有效。相的体积分数(矿物质,胶原蛋白,微孔性)代表不同组织的组成,用作模型输入。预测的弹性张量(模型的输出)与实验数据非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号