【24h】

Putting (single-cell) data into orbit

机译:将(单细胞)数据放入轨道

获取原文
获取原文并翻译 | 示例

摘要

Data from single-cell mRNA sequencing, made available by leading-edge experimental methods, demand properrepresentation and understanding. Multivariate statistics and graph theoretic methods represent cells in asuitable feature space, assign to each cell a time label known as "pseudo-time" and display "trajectories" (infact orbits) in such space. Orbits shall describe a process by which progenitors di↵erentiate into one or moretypes of adult cells: broncho-alveolar progenitors are e.g., found to evolve into two distinct pneumocyte types.This work aims at applying the qualitative theory of dynamical systems to describe the di↵erentiation process.Some notions of qualitative theory are presented (§ 2). The main stages of single-cell data analysis are outlined(§ 3). Next, a two-dimensional continuous time, autonomous dynamical system of polynomial type is lookedfor, the orbits of which may interpret some sequences of data points in feature (≡ state) space. Section 4defines an energy function F of two variables, {σ_1,σ_2}, and the autonomous dynamical system obtained fromΔF, which thus generates a gradient flow. Both F and the gradient flow give rise to a phase portrait withtwo attractors, A and B, a saddle point, O, and a separatrix. These properties are suggested by data fromsingle cell sequencing. Initial states of the system correspond to progenitors. Attractors A and B correspondto the two cell types yielded by progenitor di↵erentiation. The separatrix and the saddle point make sure anorbit asymptotically reaches either A or B. Why and how a gradient flow model shall be applied to data fromsingle-cell sequencing is discussed in § 5. The application of dynamical system theory presented herewith relieson a heuristic basis, as all population dynamics models do. Nonetheless, placing a given cell on an orbit of itsown enables time ordering and compliance with causality, unlike pseudo-time assignment induced by a minimumspanning tree. An earlier (2009) application in a much simpler context, the evolving morphology of cytoskeletaltubulines, is finally recalled: from cyto-toxicity experiments, epifluorescence images of tubulin filaments wereobtained, then analysed and assigned to morphology classes; class centroids formed a sequence in feature (≡ state) space describing loss of cytoskeletal structure followed by its recovery.
机译:通过领先的实验方法获得的单细胞mRNA测序数据需要正确的表示和理解。多元统计量和图论方法表示适当的特征空间中的单元,为每个单元分配一个称为“伪时间”的时间标签,并在其中显示“轨迹”(在实际轨道上)空间。轨道应描述祖细胞分化为一种或多种成年细胞的过程:例如,发现支气管肺泡祖细胞演化为两种不同的肺细胞类型。\ r \ n这项工作旨在应用定性理论\ r \ n提出了一些定性理论的概念(第2节)。概述了单细胞数据分析的主要阶段\ r \ n(§3)。接下来,寻找一个多项式类型的二维连续时间自主动力系统,其轨道可以解释特征(“状态”)空间中数据点的某些序列。第4节\ r \ n定义了两个变量{σ_1,σ_2}的能量函数F,以及从\ r \nΔF获得的自主动力系统,从而产生了梯度流。 F和梯度流都将产生一个具有两个吸引子A和B,一个鞍点O和一个分离线的相画像。这些属性由单细胞测序数据提示。系统的初始状态对应于祖细胞。吸引子A和B与祖细胞分化产生的两种细胞类型相对应。分离线和鞍点确保一个\ r \ norbit渐近地到达A或B。为什么和如何将梯度流模型应用于来自\ r \单细胞测序的数据,请参见§5。本文提出的系统理论不依赖于启发式基础,就像所有人口动力学模型一样。尽管如此,将给定像元放置在其未知的轨道上仍可以实现时间排序并遵守因果关系,这与最小生成树引起的伪时间分配不同。最终,在更简单的背景下(2009年),细胞骨架\ r \ n微管蛋白的形态演变,被召回:从细胞毒性实验中,微管蛋白细丝的落射荧光图像被获得,然后被分析并分配给形态学类别;类质心在特征(≡状态)空间中形成一个序列,描述了细胞骨架结构的丧失及其恢复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号