【24h】

STOCHASTIC AVERAGING: SOME METHODS AND APPLICATIONS

机译:随机平均:某些方法和应用

获取原文
获取原文并翻译 | 示例

摘要

When s tudying the dynamics of a structure submitted to some actions of stochastic type, if the excitation is not of too high level, the dynamical geometric properties of the structure will be determinant in the response analysis. In this contribution, we only deal with dimension one. Amplitude-phase variables, which are inspired by action-angle variables for Hamiltonian systems, are introduced. The main interest is that they are computable in an explicit form, and are well adapted to give results on the maximum of the mechanical variable under consideration, with inequalities which are conservative for reliability analysis. A slow and a fast process then appear. The idea is the same as Lagrange's variation of constants approach: the slow process, when considered in the unperturbed system, is a first integral of motion. In the stochastic context, the martingale formulation is used, and diffusion approximation results obtained concerning the slow process (which usually is not a diffusion process). These results extend Khasminskii's results. This is the stochastic averaging method. The same method was used by N. Sri Namachchivaya and R. B. Sowers in [20J to obtain a diffusion approximation of the Hamiltonian itself. Using this limit averaged diffusion process as an approximation of the slow process, and some results concerning the asymptotic behavior (with respect to level) of level crossings by a one dimensional diffusion process, approximations of the probability distribution of the maximum of the absolute value of the displacement of a strongly nonlinear oscillator on a given time interval are obtained. These formulae, compared with other formulae in the literature, proved to be much better.
机译:在研究受某些随机类型作用的结构动力学时,如果激励水平不是很高,则结构的动力学几何特性将在响应分析中起决定作用。在此贡献中,我们仅处理第一个维度。引入了相位相位变量,该变量受汉密尔顿系统的作用角变量的启发。主要的兴趣是它们可以以显式形式计算,并且非常适合在考虑中的机械变量最大值的情况下给出结果,其中不等式对于可靠性分析是保守的。然后出现一个缓慢而快速的过程。这个想法与Lagrange的常数变化方法相同:在不受干扰的系统中考虑时,缓慢的过程是运动的第一组成部分。在随机情况下,使用the公式,并获得有关慢速过程(通常不是扩散过程)的扩散近似结果。这些结果扩展了Khasminskii的结果。这是随机平均方法。 N. Sri Namachchivaya和R. B. Sowers在[20J]中使用了相同的方法来获得哈密顿量本身的扩散近似。使用该极限平均扩散过程作为慢速过程的近似值,以及有关一维扩散过程的平交路口的渐近行为(相对于水平)的一些结果,近似得出最大绝对值的概率分布。得到一个强非线性振荡器在给定时间间隔上的位移。与文献中的其他公式相比,这些公式被证明要好得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号