首页> 外文会议>International Symposium on Supercritical Fluids Tome 2: SCF Properties Reactions; 20030428-20030430; Versailles; FR >DEVELOPMENT OF HETEROGENEOUS CATALYSTS FOR HYDROFORMYLATION OF 1-HEXENE IN SUPERCRITICAL CARBON DIOXIDE
【24h】

DEVELOPMENT OF HETEROGENEOUS CATALYSTS FOR HYDROFORMYLATION OF 1-HEXENE IN SUPERCRITICAL CARBON DIOXIDE

机译:超临界二氧化碳中1-己烯加氢甲酰化的非均相催化剂的开发

获取原文
获取原文并翻译 | 示例

摘要

The hydroformylation of alkenes is a major commercial process used for the production of oxygenated organic compounds. Commercial hydroformylation processes may produce significant quantities of waste material. When the hydroformylation reaction is performed using a homogeneous catalyst, an organic or aqueous solvent is employed and a significant effort must be expended to recover the catalyst so it can be recycled. The hydroformylation of long-chain alkenes using homogeneous catalysts in aqueous solution is compromised because of the low-solubility of C_5 alkenes and above. Development of a selective heterogeneous catalyst would allow simplification of the process design in an integrated system that minimizes waste generation. Supported catalysts are well-known to have minimal capacity for product selectivity. To remedy this problem, we have developed tethered rhodium-phosphine catalysts with modified silica and compared them with catalysts prepared on MCM-41 and MCM-20 supports that provide improved selectivity and conversion relative to their nonporous equivalents. Platinum and palladium catalysts analogous to those of rhodium were also investigated. Our synthesis and characterization of the rhodium, platinum and palladium complexes and evaluation of their catalytic activity and selectivity for hydroformylation in supercritical carbon dioxide will be described. Recent studies have shown that a supercritical fluid may be used as a solvent for hydroformylation reactions. The use of carbon dioxide as a reaction solvent offers optimal environmental performance because it is non-toxic, non-flammable and renewable, and simplifies product separation. In particular, we have considered the conversion of 1 -hexene to heptanal using rhodium-phosphine catalysts tethered to supports insoluble in supercritical carbon dioxide to demonstrate the advantages and understand the limitations of a solid-catalyzed process.
机译:烯烃的加氢甲酰化是用于生产氧化有机化合物的主要商业方法。商业加氢甲酰化工艺可能会产生大量的废料。当使用均相催化剂进行加氢甲酰化反应时,使用有机或水性溶剂,并且必须花费大量的精力来回收催化剂,以便其可以再循环。在水溶液中使用均相催化剂使长链烯烃的加氢甲酰化受到损害,这是因为C 5和更高烯烃的溶解度低。选择性多相催化剂的开发将简化集成系统中的工艺设计,从而最大程度地减少废物的产生。众所周知,负载的催化剂具有最小的产物选择性能力。为了解决这个问题,我们开发了具有改性二氧化硅的束缚铑膦催化剂,并将它们与在MCM-41和MCM-20载体上制备的催化剂进行了比较,相对于其无孔等效物,它们提供了更高的选择性和转化率。还研究了与铑类似的铂和钯催化剂。我们将描述铑,铂和钯配合物的合成和表征,以及在超临界二氧化碳中评估其催化活性和加氢甲酰化反应的选择性。最近的研究表明,超临界流体可以用作加氢甲酰化反应的溶剂。使用二氧化碳作为反应溶剂可提供最佳的环境性能,因为它无毒,不易燃且可再生,并简化了产品分离。特别地,我们已经考虑了使用系留在超临界二氧化碳中不溶性载体的铑膦催化剂将1-己烯转化为庚醛,以证明其优点并了解固体催化方法的局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号