首页> 外文会议>International School of Physics "Enrico Fermi" Jul 31-Aug 10, 2001 Villa Monastero >Tunable photonic nanostructures: Semi-transparent metallic opal replicas and nanocomposites
【24h】

Tunable photonic nanostructures: Semi-transparent metallic opal replicas and nanocomposites

机译:可调谐的光子纳米结构:半透明的金属蛋白石复制品和纳米复合材料

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We measured the reflectivity spectra of several metallic PBG structures. We observed Bragg stop bands in the visible spectral range and a metallicity gap at ω_p < ω_p in metallic PBG structures with a network topology. We found that the spectral range at which the metallicity gap opens depends on the lattice parameters and filling factor of the metallic components. In addition, we also observed a new reflectivity band in the visible spectral range that is related to the surface plasmons of these metallic mesh structures; it is more pronounced in metallic replicas. The position of this optical gap in the visible depends very weakly on the filling factor or impinging angle of the light beam. It roughly occurs at ω_p/(ε_r+1)~(1/2), where 豞p is the slightly modified plasma frequency of the bulk. This result allows to give some predictions on the optimal conditions for making metallic nanostructures, with maximized electrical conductivity and optical transparency. The concept of highly transparent and conductive metallic nanostructures can be qualitatively understood using the diagram in fig. 8. Moreover, the viability of this concept is evident by comparing the quite different optical reflectivity of usual metals (fig. 8(a)) with those we have observed in our metallic photonic crystals. Good metals haw negative ε < 0 below the plasma frequency ω_p, which is typically in the ultraviolet, so they reflect photons with ω < ω_p. In order to achieve high conductivity, high transparency and high internal surface area, one should fabricate network-type metallic inverted opal nanostructures, or in other words with much lower losses, that we have observed and assigned to the brakes in our metallic nanowires.
机译:我们测量了几种金属PBG结构的反射光谱。我们在具有网络拓扑的金属PBG结构中观察到了可见光谱范围内的布拉格阻带和ω_p<ω_p处的金属间隙。我们发现,金属性间隙打开的光谱范围取决于晶格参数和金属成分的填充因子。此外,我们还在可见光谱范围内观察到了一个新的反射率带,该反射率带与这些金属网状结构的表面等离激元有关。在金属复制品中更为明显。该光学间隙在可见光中的位置非常弱地取决于光束的填充因数或入射角。它大致发生在ω_p/(ε_r+ 1)〜(1/2)处,其中豞p是主体的稍微修改的等离子体频率。该结果允许对制备金属纳米结构的最佳条件进行一些预测,并获得最大的电导率和光学透明度。使用图2中的图可以定性地理解高度透明和导电的金属纳米结构的概念。 8.此外,通过将普通金属(图8(a))与我们在金属光子晶体中观察到的光反射率进行比较,可以明显看出这一概念的可行性。优质金属在等离子频率ω_p(通常在紫外线下)以下具有负ε<0,因此它们反射的光子具有ω<ω_p。为了获得高导电性,高透明度和高内部表面积,应该制造出网络型金属倒置蛋白石纳米结构,换句话说,应制造出损耗小得多的金属,我们已经观察到并分配给金属纳米线中的制动器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号