首页> 外文会议>International Pyrotechnics Seminar; 20060716-21; Fort Collins,CO(US) >Application of Advanced Kinetics and Finite Element Analysis in Computational Prediction of Thermal Ignition of Energetic Materials
【24h】

Application of Advanced Kinetics and Finite Element Analysis in Computational Prediction of Thermal Ignition of Energetic Materials

机译:先进动力学和有限元分析在含能材料热点火计算预测中的应用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

During computational simulation of the thermal ignition of energetic materials two important issues have to be considered: (ⅰ) the application of advanced kinetics which properly describes the complicated, multistage course of the decomposition process and (ⅱ) the effect of heat balance in the system, as the sample mass is increased by a few orders of magnitude compared to the thermoanalytical experiments used for the determination of kinetic parameters. The application of both, advanced kinetic description and determination of the non-uniform temperature distribution within the solid energetic materials by solving the heat conduction problem has been already presented by us elsewhere.rnThe current study presents the extension of these methods for the computational prediction of the time to self-ignition of ammunition systems due to the accumulation of the heat at several constant surrounding temperatures occurring e.g. during the cook-off in a hot loading chamber. The geometry and dimension of the ammunition container and, additionally, the amount, properties and thickness of the layers of different materials used for the construction of the ammunition container have been taken into account during calculations. Application of Finite Element Analysis (FEA) and the appropriate decomposition kinetics enabled the determination of the effect of scale and geometry of the container as well as the influence of thermal conductivity, heat transfer and surrounding temperature on the heat accumulation in the sample. The results of modeling enabled the rigorous analysis of the design of the container parameters such as radius and the type and thickness of the insulation. Proposed computational methods can be used for any profile of the surrounding temperature such as isothermal, stepwise, modulated or temperature profiles reflecting the real daily minimal-maximal fluctuations for different localizations. Additionally, the temperature profiles due to the thermal shocks can be taken into account what enables the determination of the time to ignition in case of an accident during e.g. transportation.rnThe calculations have been verified by the comparison with the experimentally determined values of the time to ignition in a hot loading chamber under isothermal conditions at several temperatures for a 5.56 mm small caliber system and a new 155 mm artillery charge for the Swiss army. The simulations have been done for the sample in the form of cylinders containing three layers of materials possessing significantly different thermal properties: single-base propellant, combustible cartridge case and steel container. The very good computational prediction of the experimental time to thermal ignition indicates the high accuracy of the applied method.
机译:在高能材料热点火的计算模拟过程中,必须考虑两个重要问题:(ⅰ)先进动力学的应用,它恰当地描述了分解过程的复杂,多阶段过程,以及(ⅱ)系统中热平衡的影响与用于确定动力学参数的热分析实验相比,样品质量增加了几个数量级。先进的动力学描述和通过解决热传导问题确定固体高能材料中温度不均匀性的应用已经在其他地方提出。目前的研究提出了这些方法的扩展,用于计算热力学。弹药系统自燃的时间,这是由于在周围几个恒定温度下热量的积累所致,例如在热加载室中蒸煮时。在计算时已考虑了弹药容器的几何形状和尺寸,以及用于弹药容器构造的不同材料的层的数量,性质和厚度。通过应用有限元分析(FEA)和适当的分解动力学,可以确定容器的尺寸和几何形状以及导热率,热传递和周围温度对样品中热量累积的影响。建模结果可以对容器参数的设计进行严格的分析,例如半径,绝缘材料的类型和厚度。提议的计算方法可以用于周围温度的任何分布,例如等温,逐步,调制或反映不同位置的实际每日最小-最大波动的温度分布。另外,可以考虑由于热冲击引起的温度分布,这使得能够确定例如在燃烧过程中发生事故的情况下的点火时间。对于5.56毫米小口径系统和瑞士军方新的155毫米火炮装药,通过与在几个温度下等温条件下在热装箱中点燃时间的实验确定值的比较,对计算进行了验证。已经以圆柱体的形式对样品进行了模拟,圆柱体包含三层材料,这些材料具有明显不同的热性能:单基推进剂,可燃药筒盒和钢制容器。热点火实验时间的非常好的计算预测表明了所应用方法的高精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号