首页> 外文期刊>Journal of turbomachinery >Efficient Finite Element Analysis/Computational Fluid Dynamics Thermal Coupling for Engineering Applications
【24h】

Efficient Finite Element Analysis/Computational Fluid Dynamics Thermal Coupling for Engineering Applications

机译:工程应用中的高效有限元分析/计算流体动力学热耦合

获取原文
获取原文并翻译 | 示例
           

摘要

An efficient finite element analysis/computational fluid dynamics (FEA/CFD) thermal coupling technique has been developed and demonstrated. The thermal coupling is achieved by an iterative procedure between FEA and CFD calculations. Communication between FEA and CFD calculations ensures continuity .of temperature and heat flux. In the procedure, the FEA simulation is treated as unsteady for a given transient cycle. To speed up the thermal coupling, steady CFD calculations are employed, considering that fluid flow time scales are much shorter than those for the solid heat conduction and therefore the influence of unsteadiness in fluid regions is negligible. To facilitate the thermal coupling, the procedure is designed to allow a set of CFD models to be defined at key time points/intervals in the transient cycle and to be invoked during the coupling process at specified time points. To further enhance computational efficiency, a "frozen flow" or "energy equation only" coupling option was also developed, where only the energy equation is solved, while the flow is frozen in CFD simulation during the thermal coupling process for specified time intervals. This option has proven very useful in practice, as the flow is found to be unaffected by the thermal boundary conditions over certain time intervals. The FEA solver employed is an in-house code, and the coupling has been implemented for two different CFD solvers: a commercial code and an in-house code. Test cases include an industrial low pressure (LP) turbine and a high pressure (HP) compressor, with CFD modeling of the LP turbine disk cavity and the HP compressor drive cone cavity flows, respectively. Good agreement of wall temperatures with the industrial rig test data was observed. It is shown that the coupled solutions can be obtained in sufficiently short turn-around times (typically within a week) for use in design.
机译:已经开发并证明了一种有效的有限元分析/计算流体动力学(FEA / CFD)热耦合技术。热耦合是通过FEA和CFD计算之间的迭代过程实现的。 FEA和CFD计算之间的通信可确保温度和热通量的连续性。在此过程中,对于给定的瞬态周期,FEA仿真被视为不稳定。为了加快热耦合,采用了稳定的CFD计算,考虑到流体流动的时间尺度要比固体热传导的尺度短得多,因此流体区域不稳定的影响可以忽略不计。为了促进热耦合,该过程旨在允许在瞬态循环的关键时间点/时间间隔定义一组CFD模型,并在耦合过程中的指定时间点调用这些CFD模型。为了进一步提高计算效率,还开发了“冻结流”或“仅能量方程”耦合选项,其中仅求解能量方程,而在热耦合过程中以指定的时间间隔将流体冻结在CFD模拟中。实践证明,该选项非常有用,因为在一定的时间间隔内,流量不受热边界条件的影响。所使用的FEA求解器是内部代码,并且已针对两种不同的CFD求解器实现了耦合:商业代码和内部代码。测试案例包括工业低压(LP)涡轮机和高压(HP)压缩机,分别对LP涡轮盘腔和HP压缩机驱动锥腔流进行CFD建模。观察到壁温与工业钻机测试数据吻合良好。结果表明,可以在足够短的周转时间内(通常在一周内)获得耦合解决方案,以用于设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号