首页> 外文会议>International Groundwater Symposium 2002; Mar 25-28, 2002; Berkeley, California >MODELING REACTIVE GEOCHEMICAL TRANSPORT IN NATURAL FRACTURED ROCK SYSTEMS OVER GEOLOGICAL TIME
【24h】

MODELING REACTIVE GEOCHEMICAL TRANSPORT IN NATURAL FRACTURED ROCK SYSTEMS OVER GEOLOGICAL TIME

机译:地质时间内自然破裂岩石系统中反应地球化学传输的模拟

获取原文
获取原文并翻译 | 示例

摘要

Reactive fluid flow and geochemical transport in natural fractured rock systems has been of increasing interest to investigators in areas of geoscien-ces such as mineral deposits, sedimentary diagenesis, and fluid-rock interactions in hydrothermal systems. Validation of numerical models for natural and anthropogenic (engineered) systems may differ markedly. In anthropogenic systems such as contaminant transport and nuclear waste repositories, models must be validated based on measurements of state variables such as pressure, water saturation, and chemical concentration, and the scientific relevance of modeling must be in prediction. For natural phenomena, the geological relevance of modeling often is in hypothesis testing, because natural processes and geochemical systems may involve too many complications and uncertainties to allow for quantitative prediction. Natural mineral systems are characterized by the abundance and distribution of primary and secondary mineral phases, and by the composition of fluid phases (aqueous, gas). Often it is the presence or absence of certain minerals that provides clues to the specific physical and chemical processes and conditions during the evolution of the system. In this sense empirical tests of the accuracy of geochemical modeling are of a more qualitative nature for natural systems. If modeling can find an unambiguous answer to a simple question which is well-posed, then something can be learned. The test of numerical results is by comparison with known patterns, sequences and processes from natural systems, which may be qualitative rather than quantitative in terms of mineral abundances. Therefore, in this paper we use the term "observation" instead of "measurement", and we intend to bridge the gap between observation and modeling.
机译:天然裂缝性岩石系统中的反应性流体流动和地球化学运移已经引起了地质学领域研究人员的兴趣,例如矿物沉积,沉积成岩作用以及热液系统中的流体-岩石相互作用。天然和人为(工程)系统的数值模型验证可能会明显不同。在诸如污染源和核废料储存库等人为系统中,必须基于对状态变量(例如压力,水饱和度和化学浓度)的测量结果对模型进行验证,并且必须对模型的科学意义进行预测。对于自然现象,建模的地质相关性通常在于假设检验中,因为自然过程和地球化学系统可能涉及太多的复杂性和不确定性,无法进行定量预测。天然矿物系统的特征在于主要和次要矿物相的丰度和分布,以及流体相(水,气)的组成。通常,某些矿物的存在或不存在为系统演化过程中的特定物理和化学过程及条件提供了线索。从这个意义上说,对地球化学模型准确性的实证测试对于自然系统具有更高的定性性质。如果建模可以找到一个恰当的简单问题的明确答案,那么可以学到一些东西。数值结果的测试是通过与自然系统中已知的模式,序列和过程进行比较来进行的,就矿物质丰度而言,这可能是定性的而不是定量的。因此,在本文中,我们使用术语“观测”代替“测量”,并试图弥合观测与建模之间的差距。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号