首页> 外文学位 >Advances in Reactive Transport Modeling of Geochemical Systems: Applications to Acid Rock Drainage and the Evolution of the Critical Zone.
【24h】

Advances in Reactive Transport Modeling of Geochemical Systems: Applications to Acid Rock Drainage and the Evolution of the Critical Zone.

机译:地球化学系统反应输运模型的进展:在酸性岩层排水和临界区演化中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Advances in computational science have increased its use in understanding and mitigating multi-faceted environmental problems at a time when the preciousness of our natural resources has been realized. The prospect of using multi-dimensional models to aid in the understanding of complex environmental systems spurred my desire to contribute to this field as both an environmental engineer and computational scientist. During my graduate study, I researched, developed, and improved computational models of acid rock drainage (ARD). I also worked on a model of a natural hillslope in the Boulder creek Critical Zone Observatory (BcCZO), which was used to investigate the geochemical evolution of the critical zone (CZ). Both phenomena are commonly observed in the field, but the development of reactive transport models will further our understanding of what drives these systems. Furthermore, reactive transport models can be used to predict system response to dynamic environmental variables such as those pertaining to climate change.;Chapter one delves into modeling efforts accomplished for this dissertation that are related to primary mineral weathering and the formation of the subsurface CZ. In Chapter two, ARD reactive transport modeling efforts are described that pertain to both laboratory experiments and natural sulfide deposits. Both problems benefit from improved multi-scale models of the coupled interactions between hydrology, geochemistry, and microbiology. Applying advances in computational science to these types of problems is leading to an unprecedented understanding of the interactions of rock, water, and life. Subsurface flow and transport models are vital tools to help inform decisions for the advancement of environmental stewardship. Improving the capabilities of these multi-scale models will allow first-principles formulation of physical, chemical, and microbial processes, facilitating informed use and management of the environment.
机译:在认识到我们自然资源的珍贵之际,计算机科学的进步已将其用于理解和缓解多方面的环境问题。使用多维模型来帮助理解复杂的环境系统的前景激发了我作为环境工程师和计算科学家为这一领域做出贡献的愿望。在我的研究生学习期间,我研究,开发和改进了酸性岩石排泄(ARD)的计算模型。我还研究了博尔德克里克临界区天文台(BcCZO)的天然山坡模型,该模型用于研究临界区(CZ)的地球化学演化。这两种现象在该领域中都很常见,但是反应性传输模型的发展将使我们进一步了解驱动这些系统的原因。此外,反应输运模型可用于预测系统对动态环境变量(例如与气候变化有关的变量)的响应。第一章深入研究了为完成本论文而进行的与主要矿物风化作用和地下CZ形成有关的建模工作。在第二章中,描述了与实验室实验和天然硫化物矿床有关的ARD反应输运模型。这两个问题都受益于水文学,地球化学和微生物学之间耦合相互作用的改进的多尺度模型。将计算科学的进步应用于这些类型的问题,导致人们对岩石,水和生命之间的相互作用有了前所未有的了解。地下流动和运输模型是帮助告知决策以促进环境管理的重要工具。改善这些多尺度模型的功能,将使物理,化学和微生物过程的第一性原理得以制定,从而促进对环境的知情使用和管理。

著录项

  • 作者

    Pandey, Sachin.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Hydrologic sciences.;Geomorphology.;Geochemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号