首页> 外文会议>International Conference on Fracture and Damage Mechanics; 20060913-15; Harbin(CN) >Micromechanical Analysis of Excavation Damaged Zone in Anisotropic Rock Mass
【24h】

Micromechanical Analysis of Excavation Damaged Zone in Anisotropic Rock Mass

机译:各向异性岩体中开挖损伤带的微力学分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Rock is a heterogeneous and anisotropic compound material, containing many shear surfaces, cracks, weak surfaces and faults. Damage and failure in a rock mass can occur through sliding along persistent discontinuities, or fractures. A new micromechanical approach to modeling the mechanical behavior of excavation damaged or disturbed zone (EDZ) of anisotropic rock is presented based on knowledge of the inhomogeneity of rock. In this numerical model, damage is analyzed as a direct consequence of microcracks growth. A study of the effect of elastic and failure anisotropy plus inhomogeneity on the underground excavations reveals that the modes of failure can be significantly influenced by the rock structure on the small and large scales. Fractures that develop progressively around underground excavations can be simulated using a numerical code called RFPA (Realistic Failure Process Analysis). This code incorporates the microscopic inhomogeneity in Young's modulus and strength characteristic of rock. In the numerical models of a rock mass, values of Young's modulus and rock strength are realized according to a Weibull distribution in which the distribution parameters represent the level of inhomogeneity of the medium. Another notable feature of this code is that no a priori assumptions need to be made about where and how fracture and failure will occur - cracking can occur spontaneously and can exhibit a variety of mechanisms when certain local stress conditions are met. These unique features have made RFPA capable of simulating the whole fracturing process of initiation, propagation and coalescence of fractures around excavations under a variety of loading conditions. The results of the simulations show that the code can be used not only to produce fracturing patterns similar to those reported in previous studies, but also to predict fracturing patterns under a variety of loading conditions. The numerical model was able to reproduce the associated complex stress patterns and the microseismic emission distribution for a variety of rock structural conditions.
机译:岩石是一种非均质的各向异性复合材料,包含许多剪切面,裂缝,弱表面和断层。岩石块的损坏和破坏可能会沿着持续的不连续面或裂缝滑动而发生。基于对岩石非均质性的了解,提出了一种新的微机械方法来模拟各向异性岩石的开挖损伤或扰动带(EDZ)的力学行为。在此数值模型中,将破坏作为微裂纹增长的直接结果进行分析。对弹性和破坏各向异性以及非均质性对地下基坑的影响进行的研究表明,破坏的模式会受到岩石结构的大小影响。可以使用称为RFPA(实际破坏过程分析)的数字代码来模拟围绕地下开挖逐渐发展的裂缝。该规范将岩石的杨氏模量和强度特性纳入微观非均质性。在岩体的数值模型中,根据威布尔分布实现杨氏模量和岩石强度的值,其中分布参数表示介质的不均匀程度。该代码的另一个显着特征是,无需对断裂和失效的发生地点和方式进行先验假设-裂纹可以自发发生,并且在满足某些局部应力条件时可以表现出多种机制。这些独特的功能使RFPA能够模拟在各种载荷条件下开挖周围裂缝的整个破裂过程,包括裂缝的萌生,扩展和合并。仿真结果表明,该代码不仅可用于产生与先前研究中报道的压裂模式相似的压裂模式,而且还可用于预测各种载荷条件下的压裂模式。数值模型能够再现各种岩石结构条件下的相关复杂应力模式和微震发射分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号