【24h】

The New 'Spin' on Vascular Tissue Engineering

机译:血管组织工程学的新“自旋”

获取原文
获取原文并翻译 | 示例

摘要

Over the years there has been considerable effort to develop biomedical textiles for applications ranging from tissue engineering scaffolds to vascular grafts to wound dressings and hemostatic bandages. Biomedical textiles used for such applications must meet many criteria, among which are the following: the material must be biocompatible and function without interrupting other physiological processes and the textile production method must be reproducible and allow for a wide range of shapes and sizes such that the morphological and mechanical properties of the textile are sufficient for the intended use. The method of electrospinning is a simple fabrication process that achieves the goals of many biomedical textiles. Our lab has successfully electrospun the biodegradable polymers poly(glycolic acid) (PGA), poly(lactic acid) (PLA), polycaprolactone (PCL), and polydioxanone (PDS) as well as natural polymers including collagen (types Ⅰ, Ⅱ, Ⅲ and Ⅳ), elastin, fibrinogen, hemoglobin, and myoglobin. In addition, blends and copolymers of these synthetic and/or natural polymers have also been electrospun to develop novel biomedical textiles, including tissue engineering scaffolds, vascular grafts, wound dressings, and hemostatic bandages (U.S. and International Patents Pending). The majority of these structures are comprised of fibers ranging in diameter from 80 nm to 1.5 microns. The fiber diameters are controllable via electrospinning solution concentration, and the mechanical properties of the scaffolds are controllable via fiber diameter and fiber orientation. With various compositions, fiber dimensions, and fiber orientations, the mechanical properties and degradation rates of the electrospun textiles can be tailored. Cellular/tissue interactions have been shown to be dependent on the characteristics of the electrospun scaffolds with composition and fiber diameter as the dominant variables. The results from all this preliminary work are very promising in that the ideal biomedical textile may be customized for a specific application using this technology leading to the ultimate goal of biomimicking extracellular matrix, in particular for vascular tissue engineering. Data to date regarding our work fabricating and testing electrospun scaffolds for completely tissue engineered blood vessels (in vitro tissue engineering) and bioresorbable vascular grafts (in vivo tissue engineering) will be presented.
机译:多年来,人们一直在努力开发生物医学纺织品,其应用范围从组织工程支架到血管移植物再到伤口敷料和止血绷带。用于此类应用的生物医学纺织品必须满足许多标准,其中包括:该材料必须具有生物相容性和功能,且不能中断其他生理过程,并且纺织品生产方法必须具有可复制性,并允许各种形状和尺寸,以便纺织品的形态和机械性能足以满足预期的用途。电纺丝方法是一种简单的制造过程,可以实现许多生物医学纺织品的目标。我们的实验室已经成功地对可生物降解的聚合物聚乙醇酸(PGA),聚乳酸(PLA),聚己内酯(PCL)和聚二恶烷酮(PDS)以及包括胶原蛋白(Ⅰ,Ⅱ,Ⅲ型)在内的天然聚合物进行了静电纺丝Ⅳ)弹性蛋白,纤维蛋白原,血红蛋白和肌红蛋白。另外,这些合成和/或天然聚合物的共混物和共聚物也已经被电纺成新的生物医学纺织品,包括组织工程支架,血管移植物,伤口敷料和止血绷带(美国和国际专利申请中)。这些结构中的大多数由直径在80 nm至1.5微米范围内的纤维组成。纤维直径可通过电纺丝溶液浓度控制,而支架的机械性能可通过纤维直径和纤维取向控制。通过各种组成,纤维尺寸和纤维取向,可以定制电纺纺织品的机械性能和降解速率。已经显示细胞/组织相互作用取决于以成分和纤维直径为主要变量的电纺支架的特性。所有这些初步工作的结果都是非常有希望的,因为使用该技术可以针对特定的应用定制理想的生物医学纺织品,从而实现仿生细胞外基质的最终目标,尤其是用于血管组织工程。到目前为止,将提供有关我们为完整的组织工程血管(体外组织工程)和生物可吸收血管移植物(体内组织工程)制造和测试电纺支架的工作的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号