【24h】

Leveraging Physics Driven CMP Models in Manufacturing

机译:在制造中利用物理驱动的CMP模型

获取原文
获取原文并翻译 | 示例

摘要

Using extracted geometric design information, process models for CMP have been shown to accurately predict the systematic thickness variation across an as-manufactured chip [1,2,3]. This capability directly lends itself to the DFM related tasks of RC extraction and timing analyses, as well as sign off and hot spot detection for manufacturing [4,5,6,7,8,9]. In addition to these design side tools, a physics based modeling framework can provide valuable process development and optimization insight to the process engineer, before the process flow is fixed for a given technology node. By accurately extrapolating the effects of process changes, such as film stack thicknesses, polish times, and polish pressures, these CMP models can be used to efficiently optimize important process metrics, like throughput, planarity, and robustness to design and process variations, with fewer physical experiments. Purely empirical models cannot be used in this manner during process development, as they are implicitly tuned to a specific set of process conditions. This paper will demonstrate a number of useful CMP process optimization methodologies that are available when using physics driven CMP models with explicit process parameter settings.
机译:使用提取的几何设计信息,已显示CMP的工艺模型可以准确预测整个制造芯片上的系统厚度变化[1,2,3]。此功能直接使其适合于DFM相关的RC提取和时序分析任务,以及用于制造的签核和热点检测[4,5,6,7,8,9]。除了这些设计方面的工具之外,在为给定的技术节点确定流程之前,基于物理学的建模框架还可以为流程工程师提供有价值的流程开发和优化见解。通过准确地推断出工艺变化的影响,例如薄膜叠层厚度,抛光时间和抛光压力,这些CMP模型可以有效地优化重要的工艺指标,例如产量,平面度以及设计和工艺变化的鲁棒性,而所需的数量更少物理实验。在过程开发过程中,不能将纯经验模型以这种方式使用,因为它们被隐式地调整为一组特定的过程条件。本文将演示许多有用的CMP过程优化方法,这些方法可在将物理驱动的CMP模型用于显式过程参数设置时使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号