首页> 外文会议>International topical meeting on advances in thermal hydraulics;American Nuclear Society meeting >DEVELOPMENT OF SUPERIOR THERMAL SHOCK TOLERANT MATERIAL FOR NUCLEAR COMPONENTS BY ENGINEERING SURFACE HEAT TRANSFER MODES
【24h】

DEVELOPMENT OF SUPERIOR THERMAL SHOCK TOLERANT MATERIAL FOR NUCLEAR COMPONENTS BY ENGINEERING SURFACE HEAT TRANSFER MODES

机译:用工程表面传热模式开发核组分的耐高温材料

获取原文

摘要

Poor resistance to thermal shock is one of the major limiting factors for ceramic materials to be used as nuclear structural materials. Most past efforts to improve thermal shock tolerance focused on increasing material strength, thermal conductivity. As much as the material aspect of thermal shock tolerance is concerned, convective heat transfer is the other critical component for thermal shock tolerance, as it determines non-uniform temperature fields leading to thermal stresses. Our approach is to achieve thermal shock tolerance by reducing surface heat flux with surface modification. We perform a systematic study of the thermal shock experienced by the alumina during quenching by cold water droplet impingement with heated surface temperature ranging from 125℃ to 475℃ for Weber number =32. Degree of thermal shock is gauged from the residual strength of material post quenching. We find clear sign of thermal shock fracture for as received hydrophilic alumina due to higher heat flux during nucleate and transition boiling mode of heat transfer. Residual strength is nearly constant for surface modified alumina due to the hydrophobic nano-fractal surface that promoted film boiling mode of heat transfer, implying significant improvement in thermal shock tolerance with reduced heat flux. This is a novel approach to reduce thermal shock by controlling the heat transfer with surface modification, different from conventional, yet expensive, method of improving the bulk material properties. The presented method of improving thermal shock tolerance can be applied to various nuclear power plant components, including turbine blades.
机译:耐热冲击性差是用作核结构材料的陶瓷材料的主要限制因素之一。过去改善热冲击耐受性的大多数努力都集中在增加材料强度和导热性上。就热冲击耐受性的材料方面而言,对流传热是热冲击耐受性的另一个关键组成部分,因为它决定了导致热应力的不均匀温度场。我们的方法是通过表面改性降低表面热通量来实现热冲击耐受性。对于韦伯数= 32的加热表面温度范围为125℃至475℃的冷水滴撞击,我们对氧化铝在淬火过程中经历的热冲击进行了系统的研究。根据材料在淬火后的残余强度来衡量热冲击程度。我们发现,由于在成核和过渡沸腾传热模式中较高的热通量,所接收的亲水性氧化铝存在明显的热冲击破裂迹象。由于疏水性纳米分形表面促进了薄膜的沸腾传热模式,表面改性氧化铝的残余强度几乎恒定,这意味着在耐热冲击性方面的显着提高,同时热通量降低。这是一种新颖的方法,可以通过控制表面改性来控制传热,从而减少热冲击,这与传统的但昂贵的提高散装材料性能的方法不同。所提出的改善热冲击耐受性的方法可以应用于包括涡轮机叶片的各种核电站部件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号