首页> 外文会议>International Symposium on VLSI Design, Automation, and Test >Thermal sensor allocation and full-system temperature characterization for thermal-aware mesh-based NoC system by using compressive sensing technique
【24h】

Thermal sensor allocation and full-system temperature characterization for thermal-aware mesh-based NoC system by using compressive sensing technique

机译:基于热感知网格的NoC系统的热传感器分配和全系统温度特性的压缩感知技术

获取原文

摘要

As the complexity of multicore system grows with respect to the technology development, the large power density of multicore systems makes the thermal problems become severer. To prevent the multicore systems from overheating, in the practical way, some thermal sensors, sensing temperature at few selected locations, are embedded in the system. Then, the sensing temperatures are used to perform dynamic thermal managements (DTMs). However, searching the appropriate locations for those number limited thermal sensors is an NP-hard problem, which is time-consuming to find the optimal sensor allocations. In this paper, we demonstrate that the on-chip thermal gradients lead to sparse signals in the frequency domain. Based on this sparse-signal characteristic, we first apply the compressive sensing theory to find the thermal sensor allocations. Compressive sensing technique aims to recover the original signal from the fewer samples than the required by the Nyquist theorem. By using low-complexity random thermal sensor allocation method and Stagewise Orthogonal Matching Pursuit (StOMP)-based full-system temperature characterization, we can reduce 49% average error of full-system temperature characterization. Besides, under a constraint of full-system temperature characterization error, the proposed method can reduce 53% average number of adopted thermal sensors.
机译:随着多核系统的复杂性随着技术发展而增长,多核系统的大功率密度使得散热问题变得更加严重。为了防止多核系统过热,在系统中嵌入了一些热传感器,这些热传感器在一些选定的位置感应温度。然后,感测温度用于执行动态热管理(DTM)。但是,为那些数量有限的热传感器搜索合适的位置是一个NP难题,要找到最佳的传感器分配是很费时的。在本文中,我们证明了片上热梯度会导致频域中的信号稀疏。基于这种稀疏信号特征,我们首先应用压缩感测理论来找到热传感器分配。压缩感测技术旨在从比奈奎斯特定理所需的更少的样本中恢复原始信号。通过使用低复杂度的随机热传感器分配方法和基于阶段正交匹配追踪(StOMP)的全系统温度表征,我们可以减少49%的全系统温度表征平均误差。此外,在全系统温度表征误差的约束下,该方法可减少平均采用热传感器的53%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号