首页> 外文会议>International congress on applications of lasers electro-optics >CONTRIBUTION TO THE REPLACEMENT OF COBALT-FREE HARDFACING COATING BY LASER CLADDING IN FAST NEUTRON REACTORS
【24h】

CONTRIBUTION TO THE REPLACEMENT OF COBALT-FREE HARDFACING COATING BY LASER CLADDING IN FAST NEUTRON REACTORS

机译:快速中子反应器激光熔覆替代无钴硬质合金涂层的贡献

获取原文
获取外文期刊封面目录资料

摘要

In fast neutron reactors, some parts can be submittedto displacements between each other (as movableparts for example). On these parts, the contact areasusually need a hardfacing coating. The standardhardfacing alloy is a cobalt-base alloy (as, forexample Stellite~®6). Unfortunately, in the primarycoolant circuit and on wear conditions, cobalt can bereleased. Under neutron flux, the ~(59)Co, stable, can betransmuted into ~(60)Co by radioactive capture ofneutrons and, therefore, can contaminate theprimary circuit. Therefore, it is desired to replacethis cobalt based hardfacing alloy by a cobalt-freeone.First we sum up the existing results on cobalt-freehardfacing materials. Several types of materials suchas nickel-base alloys, iron-base alloys and ceramicsown interesting properties. However, it has beenevidenced that there are few and incomplete worksthat attempt to understand the links between thematerial composition, the microstructure of thematerial obtained by the deposition process and itsset of parameters, and the tribo-corrosion behaviorof the coating.Consequently, it has been decided to tackle thisissue by selecting a set of possible cobalt-freehardfacing materials and using laser cladding. Thematerial selected as first candidate is the Colmonoy~®alloy (Colmonoy~® 52 for laser cladding). In theindustrial application, the alloy will be deposited onthe stainless steel.The following part of the article is dedicated to thepresentation of the process parameter search. Thecobalt-free hardfacing alloy is provided in powder.It is expected that laser metal deposition can providea controlled dilution of the substrate, a lowdeformation and a fine microstructure by a finecontrol of the energy deposition. In addition, thelaser metal deposition process offers a very largerange of parameter values.The experimental setup is presented. The first cladsobtained have exhibited porosities, cracks anddeformation. The other campaigns of experimentshave been focused of avoiding/suppressing thesedefects by changing the process parameters. Inparallel, the evolution of the composition of the cladand its microstructure are analyzed. Hard phaseswith varying shape and composition, depending onthe process parameter, have been evidenced.Finally, the presentation concludes by summarizingthe links between the microstructure of theColmonoy~® 52 , the process parameter and aselection of the parameter set for further tribology(pin-on-disk) and corrosion (liquid sodium medium)tests.
机译:在快中子反应堆中,某些零件可能会彼此之间发生位移(例如,作为可移动零件)。在这些零件上,接触区域通常需要表面硬化涂层。标准的表面堆焊合金是钴基合金(例如,Stellite 6)。不幸的是,在一次冷却剂回路中和在磨损条件下,会释放出钴。在中子通量下,稳定的〜(59)Co可以通过放射性捕获中子而转变为〜(60)Co,因此可以污染一次回路。因此,期望用无钴的钴替代该钴基的堆焊合金。首先,我们总结了无钴的堆焊材料的现有结果。几种类型的材料,例如镍基合金,铁基合金和陶瓷,具有令人感兴趣的性能。然而,有证据表明,很少有不完整的工作试图理解材料组成,通过沉积工艺获得的材料的微观结构及其参数集以及涂层的摩擦腐蚀行为之间的联系。因此,已经决定通过选择一组可能的无钴堆焊材料并使用激光熔覆来解决此问题。被选为第一候选材料的是Colmonoy®合金(用于激光熔覆的Colmonoy®52)。在工业应用中,合金将沉积在不锈钢上。本文的以下部分专门介绍过程参数搜索。不含钴的硬面合金以粉末形式提供。预期激光金属沉积可通过对能量沉积的精细控制来提供对基材的受控稀释,低变形和精细的微观结构。另外,激光金属沉积工艺提供了很大范围的参数值。获得的第一包层显示出孔隙,裂纹和变形。其他实验活动的重点是通过更改过程参数来避免/抑制这些缺陷。并行地,分析了包层组成的演变及其微观结构。最后,通过总结Colmonoy®52的微观结构,工艺参数和参数集的选择之间的联系,以进一步进行摩擦学研究,最终得出结论。盘)和腐蚀(液态钠介质)测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号