首页> 外文会议>International advanced automotive battery conference;Conference on battery chemistries for automotive applications >Study of the Effect of Lithium Precursor Choice on Performance of Nickel-Rich NMC
【24h】

Study of the Effect of Lithium Precursor Choice on Performance of Nickel-Rich NMC

机译:锂前驱体选择对富镍NMC性能的影响研究

获取原文

摘要

According to market research, use of NMC cathode materials for electric vehicle applications will increase dramatically over the next decade. Specifically, migration toward nickel rich NMC532, NMC622 and NMC811 appears likely in all major xEV markets (1). Nickel-rich layered cathode materials such as LiNi0.8Co0.15A10.05O2 (NCA) and nickel-rich LiNil-x-yCoxMny02 (NMC), where Ni content is >0.6 moles can deliver high specific capacities of over 200 mAh g-1. However, the challenges surrounding synthesis of these materials are well documented (2), (3), (4). As nickel content increases the choice of lithium precursor, LiOH.H20 or Li2C03, can have a dramatic effect on the performance of these cathode materials. Here we report the advantages of using lithium hydroxide as the lithium precursor on the performance of nickel-rich NMC cathode materials. Specifically we will show that using lithium hydroxide as the lithium precursor results in: 1. Superior physical properties, such as higher tap and packing density, can be achieved at lower synthesis temperatures for nickel-rich NMC materials. 2. Improved material crystallinity as observed by x-ray diffraction, greater structural purity and less mixing of Ni2+ in the lithium layer determined by Rietveld refinement, leading to improved power performance. 3. Significant cost reduction due to increased process through-put. 4. Higher energy density materials at lower production energy consumption. Also in this study statistical design of experiments has been used to evaluate the effect of temperature, nickel content and synthesis temperature on NMC discharge rate capability and lithium content in the lithium layer. The results show statistically significant interaction between temperature, nickel content and lithium precursor. Linear regression modeling of the DOE data predicts as nickel content in NMC increases, synthesis temperature has a dramatic effect on high rate discharge capacity. The model predicts that the optimum synthesis temperature for NMC622 is 850oC. At this temperature material synthesized using LiOH.H20 as the lithium precursor performs significantly better under high rate discharge conditions compared to material synthesized using Li2C03.
机译:根据市场研究,在未来十年中,用于电动汽车的NMC阴极材料的使用将大大增加。具体而言,在所有主要的xEV市场中都有可能向富镍NMC532,NMC622和NMC811迁移(1)。镍含量> 0.6摩尔的富镍层状正极材料,例如LiNi0.8Co0.15A10.05O2(NCA)和富镍LiNil-x-yCoxMny02(NMC),可以提供超过200 mAh g-1的高比容量。但是,围绕这些材料的合成所面临的挑战已得到充分证明(2),(3),(4)。随着镍含量的增加,选择锂前体LiOH.H2O或Li2CO3会对这些正极材料的性能产生重大影响。在这里,我们报告了使用氢氧化锂作为锂前体对富镍NMC阴极材料性能的优势。具体来说,我们将证明使用氢氧化锂作为锂前体会导致:1.对于较低的富镍NMC材料,可以在较低的合成温度下获得优异的物理性能,例如更高的堆积和堆积密度。 2.通过X射线衍射观察到的材料结晶度提高,通过Rietveld改进法确定的锂层中更高的结构纯度和更少的Ni2 +混合,从而提高了功率性能。 3.由于增加了生产量,因此可显着降低成本。 4.高能量密度的材料,降低生产能耗。在这项研究中,还使用统计实验设计来评估温度,镍含量和合成温度对NMC放电速率能力和锂层中锂含量的影响。结果显示温度,镍含量和锂前体之间的统计学显着相互作用。 DOE数据的线性回归模型预测,随着NMC中镍含量的增加,合成温度对高倍率放电容量具有显着影响。该模型预测NMC622的最佳合成温度为850oC。在该温度下,与使用Li 2 CO 3合成的材料相比,使用LiOH.H 2 O作为锂前体合成的材料在高速率放电条件下的性能明显更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号