【24h】

Revisiting Deep Intrinsic Image Decompositions

机译:重新审视深层固有图像分解

获取原文

摘要

While invaluable for many computer vision applications, decomposing a natural image into intrinsic reflectance and shading layers represents a challenging, underdetermined inverse problem. As opposed to strict reliance on conventional optimization or filtering solutions with strong prior assumptions, deep learning based approaches have also been proposed to compute intrinsic image decompositions when granted access to sufficient labeled training data. The downside is that current data sources are quite limited, and broadly speaking fall into one of two categories: either dense fully-labeled images in syntheticarrow settings, or weakly-labeled data from relatively diverse natural scenes. In contrast to many previous learning-based approaches, which are often tailored to the structure of a particular dataset (and may not work well on others), we adopt core network structures that universally reflect loose prior knowledge regarding the intrinsic image formation process and can be largely shared across datasets. We then apply flexibly supervised loss layers that are customized for each source of ground truth labels. The resulting deep architecture achieves state-of-the-art results on all of the major intrinsic image benchmarks, and runs considerably faster than most at test time.
机译:尽管对于许多计算机视觉应用而言,这是无价的,但将自然图像分解为固有的反射率和阴影层却代表了一个充满挑战的,尚未确定的逆问题。与严格依赖具有强大先验假设的常规优化或过滤解决方案相反,还提出了基于深度学习的方法,当授予访问足够的带标签训练数据的权限时,可以计算固有图像分解。不利的一面是,当前的数据源非常有限,并且从广义上讲可以分为两类之一:要么是合成/狭窄环境中的密集全标签图像,要么是来自相对多样的自然场景的弱标签数据。与许多以前的基于学习的方法(通常是针对特定数据集的结构(可能无法在其他数据集上很好地工作))相对照的是,我们采用的核心网络结构普遍反映了有关固有图像形成过程的先验知识,并且可以在数据集之间广泛共享。然后,我们应用针对每个地面真相标签定制的灵活监督的损失层。最终的深度架构在所有主要的内在图像基准测试上均达到了最新的结果,并且在测试时比大多数运行速度要快得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号