首页> 外文会议>Batteries for hybrid amp; electric vehicles 2018 >Solid-State Battery Challenges for Industrial Solid Electrolytes
【24h】

Solid-State Battery Challenges for Industrial Solid Electrolytes

机译:工业固体电解质对固态电池的挑战

获取原文
获取原文并翻译 | 示例

摘要

Solid State Batteries (SSB) become the main focus technology for academic as well as industrial research and development to overcome the limits of Lithium Ion Batteries in energy density and safety. Highly conductive, electrochemical stable solid electrolytes are essential to realize SSB cells. Two of the most promising materials the oxidic Li-ion conductors Li[7]La[2]Zr[3]0[12] (LLZO) and Li[2]0-Al[2]0[3]-TiO[2]-P[2]0[5] (LATP) are presented from an industrial point of view. While academic material research is often based on volumes <100g, the outlook for higher volumes is important for industry. The possibility is demonstrated, that scalable processes can be used to realise high performance LLZO and LATP. The cubic LLZO possesses a total ionic conductivity over 3x10 E 4 S/cm and stability against lithium metal. LATP is the material of interest for ionic conduction in cathodes. It has a total conductivity over 2×10 E-4 S/cm, which can be extended to over 5×10 E-4 S/cm even at low sintering temperatures. Both materials sufficiently prevent self-discharge of batteries as their electronic conductivity is 6 orders of magnitude lower than their ionic conductivity. Furthermore, their transference number of ~ 1 allows fast charging of batteries. The solid electrolytes are chemical stable in dry air and common battery electrolytes. One of the key challenges is the controlled processing of LLZO and LATP enabling low interfacial resistances against other solid-state battery components. Especially the performance of LLZO is highly depended on surface contamination. Pyrochlor and carbonate layers lead to very high interface resistances. Advanced processing is able to reduce these interface resistances by orders of magnitude. Another important challenge is the incorporation of these oxidic particles into the cell. Either sintering or incorporation of the particles into polymer-based matrixes are often used. The unique glass ceramic nature of the SCHOTT materials allows a further adaption to system and processing needs. Production of both LLZO and LATP seems feasible at industrial scale using SCHOTT melting and glass-ceramic technologies incl. modern recycling concepts. This offers the possibility towards commercialisation of Solid-State Batteries for EV applications.
机译:固态电池(SSB)成为学术和工业研究与开发的主要重点技术,以克服锂离子电池在能量密度和安全性方面的限制。高导电性,电化学稳定的固体电解质对于实现SSB电池至关重要。两种最有希望的材料是氧化锂离子导体Li [7] La [2] Zr [3] 0 [12](LLZO)和Li [2] 0-Al [2] 0 [3] -TiO [2从工业角度提出] -P [2] 0 [5](LATP)。虽然学术材料研究通常基于<100g的量,但更高的量值的前景对工业而言很重要。证明了可以使用可伸缩过程来实现高性能LLZO和LATP的可能性。立方LLZO的总离子传导率超过3x10 E 4 S / cm,并且对锂金属具有稳定性。 LATP是阴极中离子传导的重要材料。它的总电导率超过2×10 E-4 S / cm,即使在较低的烧结温度下也可以扩展到5×10 E-4 S / cm以上。两种材料都足以防止电池的自放电,因为它们的电子电导率比其离子电导率低6个数量级。此外,它们的传输数约为1,可为电池快速充电。固体电解质在干燥空气和普通电池电解质中化学稳定。关键挑战之一是LLZO和LATP的受控处理,使其对其他固态电池组件的界面电阻较低。尤其是LLZO的性能高度依赖于表面污染。烧绿石层和碳酸盐层导致很高的界面电阻。先进的处理能够将这些接口电阻降低几个数量级。另一个重要的挑战是将这些氧化性颗粒掺入细胞中。通常使用烧结或将颗粒掺入基于聚合物的基质中。肖特材料独特的玻璃陶瓷特性使其可以进一步适应系统和加工需求。使用肖特熔化技术和玻璃陶瓷技术,包括在工业规模上生产LLZO和LATP似乎都是可行的。现代回收概念。这提供了用于电动汽车的固态电池商业化的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号