首页> 外文会议>High-power diode laser technology and applications XIV >THERMAL INVESTIGATION ON HIGH POWER DFB BROAD AREA LASERS AT 975nm, WITH 60 EFFICIENCY.
【24h】

THERMAL INVESTIGATION ON HIGH POWER DFB BROAD AREA LASERS AT 975nm, WITH 60 EFFICIENCY.

机译:高功率DFB宽带激光器在975nm处的热研究,效率为60%。

获取原文
获取原文并翻译 | 示例

摘要

The high power diode laser plays a key role for the pump source of fiber. Our knowledge on performances, robustness and failure analysis, allow us to implement the design for reliability rules from the fabrication of the diode laser since this last takes positive feedback from characterization to epitaxial process improvement. The external efficiency (dP/dI) of 1 WA~(-1) combined with low threshold current I_(th) (450mA) and low series resistance R_S (36mΩ), for a 4 mm cavity laser allows a high value of WPE with a maximum above 60% and remains stable until 8A, at least. The optical spectrum (SMSR>30dB and spectral width <1nm) and the internal parameters place the laser among the best reported works in literature. The thermal management in the high power laser is crucial, for this reason we put in place a new method for thermal resistance measurements and a FEM simulation. The intrinsically multimode nature of such diode laser, combined with low value of R_(th) ≈ 2K/W , makes hard the measurements of thermal resistance with the well-known classical method. Hence we used the T3STER© methods that directly measure the dissipated power. We established a protocol of measurements for the T3STER© and to our knowledge this is the first time such measure is done with high power diode laser at 975nm. We obtain the best value of R_(th) in literature. The measure of R_(th) with T3STER© gives information not only regarding the R_(th) but moreover regarding the heat flux in all interfaces. The simulation has a good value of accordance (maximum error < 10%) between simulation and experimental results. Moreover, we found the optimum etching depth, a good compromise between the optical and electrical confinement. This etching depth allows the diode laser to remain vertically mono mode, his gain is well confined in the central ridge and the thermal management is optimized. The more the etching is deeper and more the current density in the LOC structure will increase, and the Joule effect associated will raise the temperature inside of the laser.rnIn future, we plan to simulate the optical power, in order to untie the thermal simulation from the experimental measurement. This situation will allow us to foresee eventual bottleneck for the optical power (at high current level).
机译:高功率二极管激光器在光纤泵浦源中起着关键作用。我们对性能,鲁棒性和故障分析的了解使我们能够从二极管激光器的制造中实施可靠性规则的设计,因为这最后一个方法从表征到外延工艺改进都获得了积极的反馈。对于4 mm腔激光器,外部效率(dP / dI)为1 WA〜(-1),并具有低阈值电流I_(th)(450mA)和低串联电阻R_S(36mΩ),对于高功率WPE最大超过60%,并且至少在8A之前保持稳定。光谱(SMSR> 30dB,光谱宽度<1nm)和内部参数使激光成为文献中报道最多的作品。高功率激光器的热管理至关重要,因此,我们采用了一种新的热阻测量方法和FEM仿真方法。这种二极管激光器固有的多模性质,再加上R_(th)≈2K / W的低值,很难用众所周知的经典方法来测量热阻。因此,我们使用了T3STER©方法直接测量功耗。我们建立了T3STER©的测量协议,据我们所知,这是第一次使用975nm的高功率二极管激光器进行这种测量。我们在文学中获得了R_(th)的最佳价值。用T3STER©测得的R_(th)不仅提供有关R_(th)的信息,而且还提供有关所有接口中的热通量的信息。模拟与实验结果之间具有良好的一致性(最大误差<10%)。此外,我们发现了最佳的蚀刻深度,在光学和电气限制之间取得了很好的折衷。这种蚀刻深度使二极管激光器保持垂直单模,其增益很好地限制在中央脊中,并且优化了热管理。蚀刻越深,LOC结构中的电流密度将增加得更多,并且相关的焦耳效应将提高激光器内部的温度。rn将来,我们计划模拟光功率,以解除热模拟的束缚。从实验测量。这种情况将使我们可以预见光功率的最终瓶颈(在高电流水平下)。

著录项

  • 来源
  • 会议地点 San Francisco CA(US)
  • 作者单位

    Ⅲ-Ⅴ lab, 1 avenue Augustin Fresnel 91767 Palaiseau, France ,Laboratoire IMS, Universite de Bordeaux, CNRS UMR 5218, 351 Cours de la Liberation, 33405 Talence Cedex, France;

    Ⅲ-Ⅴ lab, 1 avenue Augustin Fresnel 91767 Palaiseau, France;

    Laboratoire IMS, Universite de Bordeaux, CNRS UMR 5218, 351 Cours de la Liberation, 33405 Talence Cedex, France;

    Ⅲ-Ⅴ lab, 1 avenue Augustin Fresnel 91767 Palaiseau, France;

    Ⅲ-Ⅴ lab, 1 avenue Augustin Fresnel 91767 Palaiseau, France;

    Ⅲ-Ⅴ lab, 1 avenue Augustin Fresnel 91767 Palaiseau, France;

    Laboratoire IMS, Universite de Bordeaux, CNRS UMR 5218, 351 Cours de la Liberation, 33405 Talence Cedex, France;

    Ⅲ-Ⅴ lab, 1 avenue Augustin Fresnel 91767 Palaiseau, France;

    Ⅲ-Ⅴ lab, 1 avenue Augustin Fresnel 91767 Palaiseau, France;

    Ⅲ-Ⅴ lab, 1 avenue Augustin Fresnel 91767 Palaiseau, France;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号