首页> 外文会议>Optics in health care and biomedical optics VIII >Deep learning for super-resolution localization microscopy
【24h】

Deep learning for super-resolution localization microscopy

机译:深度学习用于超分辨率定位显微镜

获取原文
获取原文并翻译 | 示例

摘要

Super-resolution localization microscopy techniques (e.g., STORM or PALM), breaks the optics diffraction limit, making possible the observation of sub-cellular structures in vivo. However, long acquisition time is required to maintain a desired high spatial resolution. To overcome the limitation, an effective method is to increase the density of activated emitters in each frame. The high-density emitters will cause them to overlap, which makes it difficult to accurately resolve each emitter location. Although some methods have been proposed to identify the overlapped emitters, these methods are computationally intensive and parameter dependent. To address these problems, in this paper, we proposed a novel method based on convolutional neural networks (CNN) for super-resolution localization microscopy, termed as DL-SRLM. DL-SRLM is capable of learning the nonlinear mapping between a camera frame (i.e., the experimentally acquired low-resolution image) and the true locations of emitters in the corresponding image region (i.e., the recovered super-resolution image). As a result, the method provides the possibility to faster resolve the high-density emitters, without requiring the parameters. To evaluate the performance of DL-SRLM, a series of simulations with varying emitter densities, signal-to-noise ratios (SNRs), and point spread functions (PSFs) were performed. The results show that DL-SRLM can accurately resolve the locations of high-density emitters, even if when the raw measurement data contained noise or was generated by using inaccurate PSF. In addition, DL-SRLM greatly improve the computational speed (~ 15 ms/frame) compared with the current methods while avoiding the effect of the parameters on the super-resolution imaging performance.
机译:超分辨率定位显微镜技术(例如STORM或PALM)打破了光学衍射极限,使体内亚细胞结构的观察成为可能。但是,需要较长的采集时间才能维持所需的高空间分辨率。为了克服该限制,一种有效的方法是增加每帧中激活的发射器的密度。高密度发射器将导致它们重叠,这使得难以准确解析每个发射器位置。尽管已经提出了一些方法来识别重叠的发射器,但是这些方法计算量大并且依赖于参数。为了解决这些问题,在本文中,我们提出了一种基于卷积神经网络(CNN)的超高分辨率定位显微镜的新方法,称为DL-SRLM。 DL-SRLM能够学习相机帧(即实验获得的低分辨率图像)与发射器在相应图像区域中的真实位置(即恢复的超分辨率图像)之间的非线性映射。结果,该方法提供了在不需要参数的情况下更快地解析高密度发射器的可能性。为了评估DL-SRLM的性能,执行了一系列具有变化的发射器密度,信噪比(SNR)和点扩展函数(PSF)的仿真。结果表明,即使原始测量数据包含噪声或使用不精确的PSF生成,DL-SRLM仍可以准确解析高密度发射器的位置。此外,与当前方法相比,DL-SRLM大大提高了计算速度(〜15 ms /帧),同时避免了参数对超分辨率成像性能的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号