首页> 外文期刊>IEEE Transactions on Medical Imaging >Super-Resolution Ultrasound Localization Microscopy Through Deep Learning
【24h】

Super-Resolution Ultrasound Localization Microscopy Through Deep Learning

机译:通过深度学习超分辨率超声定位显微镜

获取原文
获取原文并翻译 | 示例
       

摘要

Ultrasound localization microscopy has enabled super-resolution vascular imaging through precise localization of individual ultrasound contrast agents (microbubbles) across numerous imaging frames. However, analysis of high-density regions with significant overlaps among the microbubble point spread responses yields high localization errors, constraining the technique to low-concentration conditions. As such, long acquisition times are required to sufficiently cover the vascular bed. In this work, we present a fast and precise method for obtaining super-resolution vascular images from high-density contrast-enhanced ultrasound imaging data. This method, which we term Deep Ultrasound Localization Microscopy (Deep-ULM), exploits modern deep learning strategies and employs a convolutional neural network to perform localization microscopy in dense scenarios, learning the nonlinear image-domain implications of overlapping RF signals originating from such sets of closely spaced microbubbles. Deep-ULM is trained effectively using realistic on-line synthesized data, enabling robust inference in-vivo under a wide variety of imaging conditions. We show that deep learning attains super-resolution with challenging contrast-agent densities, both in-silico as well as in-vivo. Deep-ULM is suitable for real-time applications, resolving about 70 high-resolution patches (128 x 128 pixels) per second on a standard PC. Exploiting GPU computation, this number increases to 1250 patches per second.
机译:超声定位显微镜通过在许多成像框架上通过各自的超声造影剂(微泡)精确定位来实现超分辨率血管成像。然而,微泡点扩散响应中具有显着重叠的高密度区域的分析产生了高分辨率的误差,将该技术限制在低浓度条件下。因此,需要长时间的采集时间来充分覆盖血管床。在这项工作中,我们提出了一种从高密度对比度超声成像数据获得超分辨率血管图像的快速和精确的方法。这种方法深度超声定位显微镜(Deep-ULM)利用现代深度学习策略,采用卷积神经网络在密集方案中进行定位显微镜,学习源自该组的重叠RF信号的非线性图像域含义紧密间隔的微泡。深度乌尔姆通过实际在线合成数据有效地培训,在各种成像条件下实现了体内强大推理。我们表明深度学习达到了超级分辨率,具有具有挑战性的造影剂密度,包括硅和体内。 Deep-ULM适用于实时应用,在标准PC上每秒解析大约70个高分辨率补丁(128 x 128像素)。利用GPU计算,此数字增加到每秒1250个补丁。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号