首页> 外文会议>Ground engineering in a changing world >Three-Dimensional One Strut Failure Soil-structure Interaction Analysis for Strutted Diaphragm Wall Design by a New Mathematical Model - Two-Dimensional Plane Strain Finite Element Analysis combined with Plate Bending Theory
【24h】

Three-Dimensional One Strut Failure Soil-structure Interaction Analysis for Strutted Diaphragm Wall Design by a New Mathematical Model - Two-Dimensional Plane Strain Finite Element Analysis combined with Plate Bending Theory

机译:一种新的数学模型-二维平面应变有限元分析与板弯曲理论相结合的三维连续撑杆破坏土结构相互作用分析

获取原文
获取原文并翻译 | 示例

摘要

After a section of the Nicoll Highway diaphragm wall (D-wall) construction collapsed in 2004, thernSingapore authority require strutted D-wall designs to consider one strut failure (OSF) load cases –rnfailure of a single strut or anchor at each construction stage. OSF is 3-dimensional (3D) and non-planernstrain. It redistributes the lost strut load horizontally and vertically with arching effects. Rigorous OSFrnanalyses would need 3D finite element method (OSF/3D FE), which takes huge amounts of computingrntime and memory space. Thus OSF is often analysed in 2-dimensional finite element (OSF/2D FE)rnmodels assuming either the whole layer of struts removed (WSF/2D) or their axial stiffness reduced.rnHowever, the soil-structure interaction is complex and the design bending moments (BM) and shearsrnare often under-estimated. This paper presents a new and generic mathematical model to solve thernOSF problem by applying the orthotropic plate bending theory (PB) to OSF/2D Plaxis models.rnFictitious “rigidity factors” are introduced to solve the PB governing equations (eqn) and determine thernstrut loads, wall BMs and shears. The OSF/2D–PB model is then applied to the strutted D-wall designrnat Upper Changi Station, Singapore Downtown Line Stage 3 MRT extension Package C. This is arnnew railway line linking the Stage 1 Chinatown Station to airport with 9km tunnels and 6 stations eachrnabout 30m wide, 200m long and 30m underground. The results are compared with the OSF/3D Plaxisrnresults. The OSF/2D–PB model and its benefits over the OSF/3D and the WSF/2D are discussed.
机译:在2004年Nicoll高速公路的隔膜墙(D墙)结构的一部分倒塌后,新加坡当局要求采用支撑D墙设计,以考虑一种支撑失效(OSF)荷载工况–在每个施工阶段均导致单个支撑或锚固失效。 OSF是3维(3D)和非平面应变。它通过拱效应在水平和垂直方向上重新分配丢失的支撑杆载荷。严格的OSF分析需要3D有限元方法(OSF / 3D FE),这需要大量的计算时间和内存空间。因此,通常在二维有限元(OSF / 2D FE)模型中对OSF进行分析,假设整个支撑层被拆除(WSF / 2D)或轴向刚度减小。然而,土-结构相互作用复杂且设计弯曲弯矩(BM)和剪切力常常被低估。本文通过将正交各向异性板弯曲理论(PB)应用于OSF / 2D Plaxis模型,提出了一个新的通用数学模型来解决rnOSF问题。引入了虚拟“刚性因子”来求解PB控制方程(eqn)并确定rnstrut载荷,墙BM和剪。然后,将OSF / 2D–PB模型应用于新加坡市区地铁三期捷运扩展套件C的樟宜上层车站的高架D墙设计。这是一条阿恩纽特铁路线,将唐人街一期车站与机场连接起来,并设有9公里隧道和6个车站每个约宽30m,长200m,地下30m。将结果与OSF / 3D Plaxisrn结果进行比较。讨论了OSF / 2D–PB模型及其相对于OSF / 3D和WSF / 2D的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号