首页> 外文会议>FISITA World Automotive Congress >COMPUTER SIMULATION OF REAR IMPACTBIOMECHANICAL OCCUPANT RESPONSE PREDICTIONSFOR FRONT REAR SEATED PASSENGERS
【24h】

COMPUTER SIMULATION OF REAR IMPACTBIOMECHANICAL OCCUPANT RESPONSE PREDICTIONSFOR FRONT REAR SEATED PASSENGERS

机译:前座和后座乘客的后碰撞生物力学乘员响应预测的计算机模拟

获取原文

摘要

Many variables, each with a wide parameter range, influence theperformance limits and occupant injury protection levels provided by a motor vehiclesafety system. Full scale crash tests offer one means to study safety systemperformance, but such tests are expensive and only provide limited data related to theinfluencing variables or factors. Commercially available occupant computersimulation codes, in conjunction with efficient 'multi-variable' analysis techniqueslike the '2-level factorial' method, offer a cost-effective means for 'multi-variable'evaluation of a given safety system. The current study uses a 'Articulated TotalBody' (ATB) computer code, with a 'high-low' (I.e. 2-level) 'factorial' method, tostudy 'multi-variable' effects of motor vehicle adult occupied 'front seat systemperformance' as it relates to child head injury potential (I.e. HIC) of rear seatedchildren during rear impacts. Of primary interest is: whether or not a adult occupiedfront seat will collapse into a child seated behind, and; if front to rear contact is made,under what conditions will it result in head injury to the rear child. Variables studiedincluded: non-linear seat strength; impact severity (I.e. speed change); front adultoccupant size; rear child size; and 2 vehicle types. Front seat strength levels rangedfrom about 3.1 kN, for a typical single recliner seat, on up to about 14.7 kN for acommercially available 'belt-integrated' seat design. Impact severity levels rangedfrom about 20-kph on up to 50-kph speed changes. Front adult sizes ranged from asmall female (I.e. 50 kg) on up to a larger male of about 110 kg. Rear child sizesincluded a 3 year-old, seated in the 'built-in' booster seat of a minivan, and a 6 yearold,seated in the rear bench seat of a 4 door sedan. Analysis of the 3 year-old childhead injury potential was conducted prior to the running of sled-buck validation tests.Refinements were made to the non-linear front seat computer model for the study ofthe 6 year-old. Sled-buck tests were also run for this case. The predicted and test HICcurves compared well in each case. Finally, the child HIC data was plotted over arange of variables (I.e. front occupant weight versus rear impact severity) and theresults were compared with data from actual accident cases to validate the analysis.
机译:许多变量(每个变量具有宽泛的参数范围)会影响汽车安全系统提供的性能极限和乘员伤害防护等级。全面碰撞测试提供了一种研究安全系统性能的方法,但是这种测试非常昂贵,并且仅提供与影响变量或因素有关的有限数据。市售的乘员计算机模拟代码与有效的“多变量”分析技术(例如“二级因子”方法)相结合,为给定安全系统的“多变量”评估提供了一种经济高效的手段。当前的研究使用“铰接式车身”(ATB)计算机代码和“高-低”(即2级)“阶乘”方法来研究机动车成年人所占据的“前座系统性能”的“多变量”效应。因为它与后排撞击时后座儿童的儿童头部潜在伤害(Ie HIC)有关。最主要的兴趣是:一个成年的前排座位是否会塌陷成一个坐在后面的孩子?如果前后接触,在什么情况下会导致后部儿童头部受伤。研究的变量包括:非线性座椅强度;冲击强度(即速度变化);前成人乘员人数;后排孩子的大小;和2种车辆类型。对于典型的单躺椅座椅,前排座椅的强度范围大约为3.1 kN,对于市售的“皮带一体式”座椅设计,前排座椅的强度范围大约为14.7 kN。冲击严重程度范围从大约20公里/小时到最高50公里/小时的速度变化。前成年雄性不等,从雌性较小(即50公斤)到雄性较大的约110公斤。后排儿童的尺寸包括:一个3岁的孩子坐在微型货车的“内置”加高座椅上,一个6岁的孩子坐在4门轿车的后排长凳上。在进行雪橇降压验证测试之前,对3岁儿童头部受伤的可能性进行了分析。对6岁儿童的非线性前座计算机模型进行了改进。在这种情况下也进行了雪橇降压测试。在每种情况下,预测的HIC曲线和测试的HICcurve进行了比较。最后,将儿童HIC数据绘制在一系列变量上(即前乘员体重与后撞严重性),并将结果与​​实际事故案例中的数据进行比较以验证分析结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号