【24h】

An effective finite element method for 3-D eddy current problems

机译:解决3D涡流问题的有效有限元方法

获取原文
获取原文并翻译 | 示例

摘要

Until now we have introduced mixed finite element methods for three-dimensional eddy current problems, and have shown the effectiveness of mixed methods; see Kanayama et al. [5] and Kanayama and Kikuchi. However, the resultant linear systems derived from the mixed methods are indefinite, which cause difficulties in choosing the iterative solver, and the Lagrange multipliers turn out to be zero. This is why it is quite desirable to eliminate these extra quantities. Therefore, we have considered two iterative procedures for the eddy current problems, and have shown some numerical examples; see Kanayama et al. [7,8]. In this paper, we focus our attention on the time-harmonic electromagnetic field for which the magnetic vector potential is adopted as only one unknown complex function. This formulation is different from our previous methods; for example the electric scalar potential is set to be zero, which is sometimes used in three-dimensional eddy current problems. See [1] for a related formulation. The magnetic vector potential is discretized by the Nedelec element of simplex type; see Nedelec. Then, as in [7] and [8], we introduce a finite element method without the Lagrange multiplier, which is an extension of an iterative one derived from a perturbation problem of the magnetostatic problem in Kikuchi and Fukuhara. Moreover, to consider the continuity of an excitation current density, we also propose a correction method. It is well known that we need to consider the continuity of the excitation current density when the magnetic vector potential is an unknown function; see, for example, Fujiwara et al. [3] systems, and the iterative procedure converges for a rather wide range of the perturbation prameter.
机译:到目前为止,我们已经针对三维涡流问题引入了混合有限元方法,并证明了混合方法的有效性。参见金山等。 [5]以及金山和菊池。但是,从混合方法得出的线性系统是不确定的,这在选择迭代求解器时会造成困难,并且拉格朗日乘数结果为零。这就是为什么非常需要消除这些额外的数量。因此,我们考虑了涡流问题的两个迭代过程,并给出了一些数值示例。参见金山等。 [7,8]。在本文中,我们将注意力集中在时谐电磁场上,在该场中,磁矢量势仅被用作一个未知复函数。此公式与我们以前的方法不同;例如,将标量电势设置为零,有时将其用于三维涡流问题。相关表述参见[1]。磁矢量势由单纯形的Nedelec元素离散;参见Nedelec。然后,像[7]和[8]中一样,我们引入了不带拉格朗日乘子的有限元方法,该方法是从菊池和福原市静磁问题的摄动问题得出的迭代方法的扩展。此外,为了考虑激励电流密度的连续性,我们还提出了一种校正方法。众所周知,当磁矢量势是未知函数时,我们需要考虑励磁电流密度的连续性。参见,例如,藤原等。 [3]系统,并且迭代过程收敛于相当大范围的摄动参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号