首页> 外文会议>Enzyme engineering XXIV >STRUCTURE AND FUNCTION OF LYTIC POLYSACCHARIDE MONOOXYGENASES (LPMOS) AND OTHER REDOX ENZYMES INVOLVED IN BIOMASS PROCESSING
【24h】

STRUCTURE AND FUNCTION OF LYTIC POLYSACCHARIDE MONOOXYGENASES (LPMOS) AND OTHER REDOX ENZYMES INVOLVED IN BIOMASS PROCESSING

机译:生物质过程中涉及的多糖多糖单氧合酶(LPMOS)和其他氧化还原酶的结构和功能

获取原文
获取原文并翻译 | 示例

摘要

The discovery of Lytic Polysaccharide Monooxygenases (LPMOs) has revolutionized our understanding of biomass conversion in Nature and has been instrumental for the development of economically sustainable lignocellulose biorefineries. LPMOs are mono-copper redox enzymes that attack the most recalcitrant parts of biopolymers such as crystalline cellulose and chitin. LPMOs employ the power of redox chemistry to cleave glycosidic bonds that are not easily cleaved by hydrolytic enzymes. By doing so, they make the substrate more tractable to the action of canonical enzymes such as endo- and exo-cellulases. LPMOs are abundant in Nature, for example in the secretomes of wood-decaying fungi. Despite their importance in both Nature and the biorefinery, several aspects of these intriguing enzymes remain unclear. The catalytic mechanism of LPMOs is of particular importance because the enzymes display a unique active site architecture that is employed to catalyze a challenging chemical reaction on a substrate that is embedded in a crystalline lattice. Deeper insight into this mechanism may have wide-reaching consequences, not only for biomass processing but also, perhaps, in developing enzymatic or other catalytic systems for difficult reactions, such as controlled oxidation of methane and other alkanes. Using a variety of experimental approaches, we are studying LPMO function, addressing issues such as the structural basis of oxidative regio-selectivity and substrate specificity, routes and mechanisms for electron delivery, the roles of appended carbohydrate-binding domains, and the determinants of catalytic activity and stability. Knowledge gained from these fundamental studies is being used to optimize biomass conversion processes, whereas translation of this knowledge to other fields is also being explored. In this presentation, I will review recent work in the field and present our latest results. Special attention will be paid to recent research in our group that has led to the proposal that LPMOs may not be true monooxygenases. Based on our recent results, we have proposed that hydrogen peroxide, rather than molecular oxygen, is the preferred co-substrate of LPMOs. While this paradigm-shattering proposal may not yet have found wide acceptance in the field, we have already demonstrated that the controlled administration of hydrogen peroxide during biomass degradation by LPMO-containing commercial cellulolytic enzyme cocktails leads to drastically improved LPMO activity and more efficient saccharification. These recent findings also shed new light on the interplay between LPMOs and other redox enzymes in the secretomes of biomass degrading microorganisms.
机译:溶解性多糖单加氧酶(LPMO)的发现彻底改变了我们对自然界中生物质转化的理解,并为发展经济上可持续的木质纤维素生物精炼厂发挥了作用。 LPMO是一种单铜氧化还原酶,可攻击生物聚合物中最难降解的部分,例如结晶纤维素和几丁质。 LPMO利用氧化还原化学的能力来切割糖苷键,而糖苷键不易被水解酶切割。通过这样做,它们使底物更易于接受诸如内切和外切纤维素酶之类的规范酶的作用。 LPMO在自然界中非常丰富,例如在腐朽木霉真菌的分泌物中。尽管它们在自然界和生物精炼中都具有重要意义,但这些有趣的酶的几个方面仍不清楚。 LPMO的催化机制尤为重要,因为这些酶显示出独特的活性位点结构,该结构可用于催化嵌入晶格中的底物上具有挑战性的化学反应。对这种机制的更深入了解可能不仅对生物质加工产生广泛影响,而且可能对开发用于困难反应(例如甲烷和其他烷烃的受控氧化)的酶促或其他催化体系产生广泛影响。我们使用各种实验方法来研究LPMO功能,解决诸如氧化区域选择性和底物特异性的结构基础,电子传递的途径和机制,附加的碳水化合物结合域的作用以及催化作用的决定因素等问题。活动和稳定性。从这些基础研究中获得的知识被用于优化生物质转化过程,与此同时,也正在探索将该知识转化为其他领域。在此演示中,我将回顾该领域的最新工作并介绍我们的最新结果。将特别注意我们小组最近的研究,该研究导致提出了关于LPMO可能不是真正的单加氧酶的提议。根据我们最近的结果,我们提出过氧化氢而不是分子氧是LPMO的首选共底物。尽管这种打破范式的提议可能尚未在本领域得到广泛认可,但我们已经证明,在含LPMO的商业纤维素分解酶混合物对生物质进行降解期间,过氧化氢的受控施用可显着改善LPMO活性并提高糖化效率。这些最新发现也为生物量降解微生物分泌基因组中的LPMO和其他氧化还原酶之间的相互作用提供了新的思路。

著录项

  • 来源
    《Enzyme engineering XXIV》|2017年|23-23|共1页
  • 会议地点 Toulouse(FR)
  • 作者单位

    Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, N-1432 Ås, Norway;

    NMBU, Norway INRA, UMR792, Ingenierie des Systemes Biologiques et des Precedes, F-31400 Toulouse, France;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cellulose; monooxygenase; hydrogen peroxide; copper; cellulase;

    机译:纤维素;单加氧酶过氧化氢铜;纤维素酶;
  • 入库时间 2022-08-26 14:31:34

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号