首页> 外文会议>Emerging Technologies -Nanoelectronics, 2006 IEEE Conference on >Tunable and sensitive biophotonic waveguides based on photonic-bandgap microcavities
【24h】

Tunable and sensitive biophotonic waveguides based on photonic-bandgap microcavities

机译:基于光子带隙微腔的可调谐敏感生物光子波导

获取原文

摘要

This paper presents a theoretical study of active one-dimensional (1-D) silicon photonic bandgap waveguides. To the best of our knowledge, we provide for the first time, a systematic study of the various physical parameters that can affect the Q factor and transmission properties in such waveguides. In order to make this technology viable, the waveguides must be tunable, have low attenuation, possess high Q factor, and can be switched. Can these be achieved simultaneously without changing the device width and height dimensions? Furthermore, can we meet these aims without placing unrealistic demands in fabrication? The electrical switching of this device is implemented using a p-i-n optical diode. The diode is predicted to require a ON state power of 81 nW with rise and fall times of 0.2 ns and 0.043 ns respectively. The length of the microcavity and the diameter of the air holes are finely tuned with reference to the Q factor and transmission. It will be shown that for certain desired resonant wavelength, the Q factor and transmission properties can be optimized by tuning the length of the cavity and the diameter of the two inner most air holes. This method allows ease of fabrication by not having to vary the waveguide width and height to obtain the tuning effects. Optical simulation was performed using 3-D finite difference time domain (FDTD) simulation method.
机译:本文介绍了有源一维(1-D)硅光子带隙波导的理论研究。据我们所知,我们首次提供了可能影响此类波导的Q因子和传输特性的各种物理参数的系统研究。为了使该技术可行,波导必须是可调谐的,具有低衰减,具有高Q因数并且可以切换。是否可以在不更改设备宽度和高度尺寸的情况下同时实现这些目标?此外,我们能否在不对制造提出不切实际的要求的情况下实现这些目标?使用p-i-n光电二极管实现该设备的电气开关。预计该二极管需要81 nW的导通状态功率,其上升和下降时间分别为0.2 ns和0.043 ns。微腔的长度和气孔的直径参照Q因子和透射率进行了微调。将显示出,对于某些期望的谐振波长,可以通过调节腔的长度和两个最里面的空气孔的直径来优化Q因数和透射特性。通过不必改变波导的宽度和高度来获得调谐效果,该方法使得制造容易。使用3-D时差有限差分(FDTD)模拟方法进行光学模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号