首页> 外文会议>Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD'05); 20050821-24; Chicago,IL(US) >Efficient Computations via Scalable Sparse Kernel Partial Least Squares and Boosted Latent Features
【24h】

Efficient Computations via Scalable Sparse Kernel Partial Least Squares and Boosted Latent Features

机译:通过可扩展的稀疏内核局部最小二乘和增强的潜在特征进行高效计算

获取原文
获取原文并翻译 | 示例

摘要

Kernel partial least squares (KPLS) has been known as a generic kernel regression method and proven to be competitive with other kernel regression methods such as support vector machines for regression (SVM) and kernel ridge regression. Kernel boosted latent features (KBLF) is a variant of KPLS for any differentiate convex loss functions. It provides a more flexible framework for various predictive modeling tasks such as classification with logistic loss and robust regression with L1 norm loss, etc. However, KPLS and KBLF solutions are dense and thus not suitable for large-scale computations. Sparsification of KPLS solutions has been studied for dual and primal forms. For dual spar-sity, it requires solving a nonlinear optimization problem at every iteration step and its computational burden limits its applicability to general regression tasks. In this paper, we propose simple heuristics to approximate sparse solutions for KPLS and the framework is also applied for sparsify-ing KBLF solutions. The algorithm provides an interesting "path" from a maximum residual criterion based algorithm with orthogonality conditions to the dense KPLS/KBLF. With the orthogonality, it differentiates itself from many existing forward selection-type algorithms. The computational advantage is illustrated by benchmark datasets and comparison to SVM is done.
机译:内核偏最小二乘(KPLS)被称为通用内核回归方法,并被证明与其他内核回归方法(例如支持向量机回归(SVM)和内核岭回归)具有竞争优势。内核增强的潜在特征(KBLF)是KPLS的变体,适用于任何微分的凸损失函数。它为各种预测建模任务提供了更灵活的框架,例如具有逻辑损失的分类和具有L1范数损失的鲁棒回归等。但是,KPLS和KBLF解决方案比较密集,因此不适合大规模计算。 KPLS解决方案的稀疏性已针对双重形式和原始形式进行了研究。对于双重稀疏性,它需要在每个迭代步骤中解决非线性优化问题,并且其计算负担限制了其对一般回归任务的适用性。在本文中,我们提出了简单的启发式方法来近似KPLS的稀疏解决方案,并且该框架还适用于稀疏化KBLF解决方案。该算法提供了一条从具有正交性条件的基于最大残差准则的算法到密集KPLS / KBLF的有趣“路径”。借助正交性,它与许多现有的前向选择类型算法有所不同。基准数据集说明了计算优势,并与SVM进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号