首页> 美国卫生研究院文献>BMC Systems Biology >Kernelized partial least squares for feature reduction and classification of gene microarray data
【2h】

Kernelized partial least squares for feature reduction and classification of gene microarray data

机译:核化的偏最小二乘用于特征减少和基因芯片数据分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundThe primary objectives of this paper are: 1.) to apply Statistical Learning Theory (SLT), specifically Partial Least Squares (PLS) and Kernelized PLS (K-PLS), to the universal "feature-rich/case-poor" (also known as "large p small n", or "high-dimension, low-sample size") microarray problem by eliminating those features (or probes) that do not contribute to the "best" chromosome bio-markers for lung cancer, and 2.) quantitatively measure and verify (by an independent means) the efficacy of this PLS process. A secondary objective is to integrate these significant improvements in diagnostic and prognostic biomedical applications into the clinical research arena. That is, to devise a framework for converting SLT results into direct, useful clinical information for patient care or pharmaceutical research. We, therefore, propose and preliminarily evaluate, a process whereby PLS, K-PLS, and Support Vector Machines (SVM) may be integrated with the accepted and well understood traditional biostatistical "gold standard", Cox Proportional Hazard model and Kaplan-Meier survival analysis methods. Specifically, this new combination will be illustrated with both PLS and Kaplan-Meier followed by PLS and Cox Hazard Ratios (CHR) and can be easily extended for both the K-PLS and SVM paradigms. Finally, these previously described processes are contained in the Fine Feature Selection (FFS) component of our overall feature reduction/evaluation process, which consists of the following components: 1.) coarse feature reduction, 2.) fine feature selection and 3.) classification (as described in this paper) and prediction.
机译:背景技术本文的主要目标是:1.)将统计学习理论(SLT),特别是偏最小二乘(PLS)和核化的PLS(K-PLS)应用到普遍的“功能丰富/案例贫乏”(也被称为“大p小n”或“高维,低样本量”的微阵列问题,方法是消除那些不构成肺癌“最佳”染色体生物标记的特征(或探针),2 。)定量测量和验证(通过独立方式)此PLS过程的有效性。第二个目标是将诊断和预后生物医学应用中的这些重大改进集成到临床研究领域。也就是说,设计一个框架,将SLT结果转换为直接,有用的临床信息,以用于患者护理或药物研究。因此,我们提出并初步评估了一个过程,可以将PLS,K-PLS和支持向量机(SVM)与公认的且众所周知的传统生物统计学“金标准”,Cox比例风险模型和Kaplan-Meier生存整合在一起分析方法。具体而言,将通过PLS和Kaplan-Meier以及PLS和Cox危险比(CHR)来说明这种新组合,并且可以轻松地将其扩展为K-PLS和SVM范例。最后,这些先前描述的过程包含在我们整体特征缩减/评估过程的精细特征选择(FFS)组件中,该组件包括以下组件:1.)粗略特征缩减; 2。)精细特征选择; 3。)分类(如本文所述)和预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号