首页> 外文会议>EAGE Conference Exhibition Incorporating SPE EUROPEC >A Practical Iterative Scheme for Coupling Geomechanics With Reservoir Simulation
【24h】

A Practical Iterative Scheme for Coupling Geomechanics With Reservoir Simulation

机译:地质力学与油藏模拟耦合的实用迭代方案

获取原文

摘要

The use of reservoir simulation coupled with geomechanics to model physical phenomena such as compaction, subsidence, induced fracturing, enhancement of natural fractures and/or fault activation, SAGD recovery etc.., has been increasing. Among different methods investigated by researchers. The iterative explicit method appears to be the preferred method for field-scale simulation. This method is a loose coupled approach between a reservoir and a geomechanical simulator. At user-defined steps, the fluid pressures are transmitted to the geomechanical tool which computes the actual stresses and reports the modifications of porosities and permeabilities back to the reservoir simulator. In the classical iterative scheme, at each stress equilibration step, the reservoir simulation needs to be restarted from the previous converged step. This scheme can be difficult to implement within an industrial IT environment. This paper presents a new iterative scheme which allows: - any reservoir simulator, - to be coupled with any nonlinear FEM package for the stress analysis without any limitation on the functionality of either simulator. The convergence of this new scheme is discussed and results are presented for three cases described below. The first case is a validation case used by other SPE papers. The second case is a synthetic model of a highly compacting reservoir sensitive to water saturation. The third one is a full field reservoir model. Faults are modeled inside the reservoir CPG grid and also inside the geomechanical mesh using specific cohesive elements. In all cases, convergence is achieved in a few iterations and results are comparable to those obtained with previously tested methods. The feasibility of the proposed coupling approach using industrial software is proved. Another advantage compared to the standard iterative scheme is the ability to compare production profiles over the complete time history at the end of each geomechanical iteration. The reservoir engineer evaluates the coupling effects and ends the iterative process when production curves variations between two iterations are no longer significant.
机译:越来越多地使用储层模拟与地质力学来对物理现象进行建模,例如压实,沉降,诱发压裂,天然裂缝的增强和/或断层活化,SAGD恢复等。研究人员研究了不同的方法。迭代显式方法似乎是现场规模仿真的首选方法。该方法是储层和地质力学模拟器之间的松耦合方法。在用户定义的步骤中,流体压力会传输到地质力学工具,该工具会计算实际应力并将孔隙率和渗透率的变化报告回油藏模拟器。在经典的迭代方案中,在每个应力平衡步骤中,都需要从先前的收敛步骤重新开始油藏模拟。在工业IT环境中可能很难实施此方案。本文提出了一种新的迭代方案,该方案允许:-任何油藏仿真器,-可以与任何非线性FEM软件包结合使用以进行应力分析,而对任何一个仿真器的功能都没有任何限制。讨论了该新方案的收敛性,并针对以下三种情况给出了结果。第一种情况是其他SPE论文使用的验证情况。第二种情况是对水饱和度敏感的高密实储层的综合模型。第三个是全油田储层模型。断层在储层CPG网格内部以及地质力学网格内部使用特定的粘聚元素建模。在所有情况下,只需几次迭代即可实现收敛,并且结果与以前测试的方法所获得的结果相当。证明了使用工业软件提出的耦合方法的可行性。与标准迭代方案相比,另一个优点是能够在每次地质力学迭代结束时比较完整时间历史中的生产资料。当两次迭代之间的生产曲线变化不再显着时,储层工程师将评估耦合效应并结束迭代过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号