首页> 外文会议>Design, Automation & Test in Europe Conference and Exhibition >An adaptive Memory Interface Controller for improving bandwidth utilization of hybrid and reconfigurable systems
【24h】

An adaptive Memory Interface Controller for improving bandwidth utilization of hybrid and reconfigurable systems

机译:自适应内存接口控制器,用于提高混合和可重配置系统的带宽利用率

获取原文

摘要

Data mining, bioinformatics, knowledge discovery, social network analysis, are emerging irregular applications that exploits data structures based on pointers or linked lists, such as graphs, unbalanced trees or unstructured grids. These applications are characterized by unpredictable memory accesses and generally are memory bandwidth bound, but also presents large amounts of inherent dynamic parallelism because they can potentially spawn concurrent activities for each one of the element they are exploring. Hybrid architectures, which integrate general purpose processors with reconfigurable devices, appears promising target platforms for accelerating irregular applications. These systems often connect to distributed and multi-ported memories, potentially enabling parallel memory operations. However, these memory architectures introduce several challenges, such as the necessity to manage concurrency and synchronization to avoid structural conflicts on shared memory locations and to guarantee consistency. In this paper we present an adaptive Memory Interface Controller (MIC) that addresses these issues. The MIC is a general and customizable solution that can target several different memory structures, and is suitable for High Level Synthesis frameworks. It implements a dynamic arbitration scheme, which avoids conflicts on memory resources at runtime, and supports atomic memory operations, commonly exploited for synchronization directives in parallel programming paradigms. The MIC simultaneously maps multiple accesses to different memory ports, allowing fine grained parallelism exploitation and ensuring correctness also in the presence of irregular and statically unpredictable memory access patterns. We evaluated the effectiveness of our approach on a typical irregular kernel, graph Breadth First Search (BFS), exploring different design alternatives.
机译:数据挖掘,生物信息学,知识发现,社交网络分析是新兴的不规则应用程序,它们基于指针或链接列表(例如图形,不平衡树或非结构化网格)来利用数据结构。这些应用程序的特征是不可预测的内存访问,并且通常受内存带宽限制,但是由于存在潜在的针对它们正在探究的每个元素的并发活动,它们还呈现出大量固有的动态并行性。将通用处理器与可重配置设备集成在一起的混合体系结构似乎有望用于加速非常规应用程序的目标平台。这些系统通常连接到分布式和多端口存储器,从而有可能实现并行存储器操作。但是,这些内存体系结构带来了一些挑战,例如必须管理并发性和同步性,以避免共享内存位置上的结构冲突并保证一致性。在本文中,我们提出了解决这些问题的自适应存储器接口控制器(MIC)。 MIC是一种通用且可自定义的解决方案,可以针对几种不同的内存结构,并且适用于高级综合框架。它实现了动态仲裁方案,该方案避免了运行时内存资源上的冲突,并支持原子内存操作,原子内存操作通常用于并行编程范例中的同步指令。 MIC同时将多次访问映射到不同的存储器端口,从而允许细粒度的并行性利用,并在存在不规则且静态不可预测的存储器访问模式的情况下也确保正确性。我们在典型的不规则核图形“广度优先搜索”(BFS)上评估了我们方法的有效性,并探索了不同的设计替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号