首页> 外文会议>Corrosion Prevention - 2000 >Mechanism Of Pitting Corrosion Of Copper Tubes In Soft Drinking Waters
【24h】

Mechanism Of Pitting Corrosion Of Copper Tubes In Soft Drinking Waters

机译:饮用水中铜管点蚀的机理

获取原文

摘要

The pitting corrosion of copper tubes in drinking waters, along with the associated problems of 'blue water' and cuprosolvency have been the subject of intermittent research for over half a century. Whilst the distinction between pitting 'types' has gradually faded with time, a single unifying theory for localized copper corrosion has yet to be developed. The present authors have used novel microelectrode electrochemical techniques supported by field observations and thermodynamic calculations to propose a view of the mechanism of pitting corrosion of copper in soft waters. The model stresses the dependency of copper pitting on the formation of a suitable cathodic film on the tube surface. In the absence of a more noble conductor, this film is typically the cubic, low pH form of cuprous oxide. The paradox of soft water copper pitting is that, whilst a low interfacial pH is a pre-requisite for pitting, so too is a relatively high bulk water pH, which favours the destabilisation of the original low porosity, protective cuprous oxide film and precipitation of a cupric salt scale. In a poorly-buffered water, cupric salt scale formation can be detrimental, as it creates a local environment shielded from the bulk solution, where formation of a low interfacial pH may occur due to copper hydrolysis. Cuprous oxide stability increases with decreasing pH, and as the interfacial pH lowers, may re-precipitate beneath the cupric salt scale. The form of cuprous oxide precipitated depends on pH, and if the interfacial pH is below 5, then the cubic, non-protective form of cuprous oxide will precipitate. In a well-buffered water the interfacial pH may be 6 or above, in which case a protective film of cuprous oxide will redevelop. Pit propagation is achieved via a galvanic couple between the large cubic cuprous oxide (low pH type) cathode and small copper anode. The high porosity of the cubic cuprous oxide film formed at low interfacial pH provides the sites for pit initiation. pH and buffering capacity are believed to be the critical water chemistry variables influencing pitting propensity in soft waters. These variables define oxide film growth and stability, conditions for cupric salt precipitation with low buffering capacity facilitating the development of local low pH conditions at the interface.
机译:饮用水中铜管的点蚀以及“蓝水”和铜溶解性的相关问题已成为半个多世纪间断研究的主题。虽然点蚀“类型”之间的区别随着时间逐渐消失,但尚未开发出统一的局部铜腐蚀理论。作者利用现场观测和热力学计算支持的新型微电极电化学技术,提出了软水中铜点蚀的机理的观点。该模型强调了铜点蚀对管表面上合适的阴极膜形成的依赖性。在没有更贵重的导体的情况下,该膜通常是氧化亚铜的立方,低pH形式。软水铜点蚀的矛盾之处在于,虽然低的界面pH值是点蚀的先决条件,但较高的整体水pH值也是如此,这有利于稳定原始的低孔隙度,保护性的氧化亚铜膜和沉淀。铜盐垢。在缓冲不良的水中,铜盐垢的形成可能是有害的,因为它会形成与整体溶液隔离的局部环境,在该环境中,由于铜的水解可能会形成低界面pH。氧化亚铜的稳定性随pH值的降低而增加,并且随着界面pH值的降低,可能会在铜盐垢以下重新沉淀。沉淀的氧化亚铜的形式取决于pH值,如果界面pH值低于5,则将沉淀出立方的非保护性氧化亚铜。在缓冲良好的水中,界面的pH值可以为6或更高,在这种情况下,氧化亚铜的保护膜将重新显影。坑的传播是通过大立方氧化亚铜(低pH型)阴极和小铜阳极之间的电偶实现的。在低界面pH值下形成的立方氧化亚铜膜的高孔隙度为坑蚀引发提供了场所。 pH和缓冲能力被认为是影响软水中点蚀倾向的关键水化学变量。这些变量定义了氧化膜的生长和稳定性,铜盐沉淀的条件以及低缓冲能力,从而促进了界面处局部低pH条件的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号